login
A030324
Triangle read by rows, where row k consists of the binary digits of Fibonacci(k+1).
7
1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0
OFFSET
1,1
LINKS
Robert Israel, Table of n, a(n) for n = 1..10098 (rows 1 to 170, flattened)
EXAMPLE
Triangle starts
1
1, 0
1, 1
1, 0, 1
1, 0, 0, 0
1, 1, 0, 1
1, 0, 1, 0, 1
1, 0, 0, 0, 1, 0
MAPLE
for n from 2 to 30 do
ListTools:-Reverse(convert(combinat:-fibonacci(n), base, 2))
od; # Robert Israel, Sep 12 2018
MATHEMATICA
Flatten[Map[IntegerDigits[#, 2] &, Table[Fibonacci[n], {n, 50}], {1}]] (* Ben Branman, Feb 14 2011 *)
IntegerDigits[#, 2]&/@Fibonacci[Range[2, 20]]//Flatten (* Harvey P. Dale, May 29 2021 *)
CROSSREFS
Cf. A000045, A004685, A272170 (second column).
Sequence in context: A014519 A014204 A014399 * A014174 A014339 A188090
KEYWORD
nonn,base,tabf
EXTENSIONS
Edited by Robert Israel, Sep 12 2018
STATUS
approved