login
Triangle read by rows, where row k consists of the binary digits of Fibonacci(k+1).
7

%I #30 Feb 05 2023 09:20:24

%S 1,1,0,1,1,1,0,1,1,0,0,0,1,1,0,1,1,0,1,0,1,1,0,0,0,1,0,1,1,0,1,1,1,1,

%T 0,1,1,0,0,1,1,0,0,1,0,0,0,0,1,1,1,0,1,0,0,1,1,0,1,1,1,1,0,0,1,1,0,0,

%U 1,1,0,0,0,1,0,1,1,1,1,0,1,1,0,1,1,1,1,0,0,0

%N Triangle read by rows, where row k consists of the binary digits of Fibonacci(k+1).

%H Robert Israel, <a href="/A030324/b030324.txt">Table of n, a(n) for n = 1..10098</a> (rows 1 to 170, flattened)

%e Triangle starts

%e 1

%e 1, 0

%e 1, 1

%e 1, 0, 1

%e 1, 0, 0, 0

%e 1, 1, 0, 1

%e 1, 0, 1, 0, 1

%e 1, 0, 0, 0, 1, 0

%p for n from 2 to 30 do

%p ListTools:-Reverse(convert(combinat:-fibonacci(n),base,2))

%p od; # _Robert Israel_, Sep 12 2018

%t Flatten[Map[IntegerDigits[#, 2] &, Table[Fibonacci[n], {n, 50}], {1}]] (* _Ben Branman_, Feb 14 2011 *)

%t IntegerDigits[#,2]&/@Fibonacci[Range[2,20]]//Flatten (* _Harvey P. Dale_, May 29 2021 *)

%Y Cf. A000045, A004685, A272170 (second column).

%K nonn,base,tabf

%O 1,1

%A _Clark Kimberling_

%E Edited by _Robert Israel_, Sep 12 2018