login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187957
Half the number of (n+2)X4 binary arrays with no 3X3 subblock having a sum equal to any horizontal or vertical neighbor 3X3 subblock sum
1
1408, 8768, 53728, 322128, 2092928, 13520976, 86157696, 548059536, 3471855360, 21859425872, 139526151616, 888660941136, 5639390386304, 35875799655952, 227944117135296, 1445770705741904, 9197000455294016, 58463779006676944
OFFSET
1,1
COMMENTS
Column 2 of A187964
LINKS
FORMULA
Empirical: a(n)=5*a(n-1)+6*a(n-2)+99*a(n-3)-517*a(n-4)-346*a(n-5)+13033*a(n-6)-57833*a(n-7)-68926*a(n-8)-836599*a(n-9)+4655561*a(n-10)+3070398*a(n-11)-36610155*a(n-12)+119400299*a(n-13)+173417410*a(n-14)+1824238221*a(n-15)-9638608359*a(n-16)-6192477994*a(n-17)+17695576415*a(n-18)+7002784613*a(n-19)-63838801602*a(n-20)-959349540229*a(n-21)+4083676919591*a(n-22)+2355193730782*a(n-23)-4198619892256*a(n-24)-7250034805352*a(n-25)+7731581573048*a(n-26)+194164612372656*a(n-27)-720965905404336*a(n-28)-368111638621968*a(n-29)+652720485880384*a(n-30)+319887464830272*a(n-31)-654416911165280*a(n-32)-17098847044080224*a(n-33)+58688760015389280*a(n-34)+24593110863134208*a(n-35)-58350586496272896*a(n-36)+77161628915051776*a(n-37)+67185400310475904*a(n-38)+594795385181513472*a(n-39)-1933364516082720768*a(n-40)-489171971302665472*a(n-41)+2599243116793135360*a(n-42)-6709901327757569280*a(n-43)-3388850463215656960*a(n-44)-1255020362386550016*a(n-45)+7714005820133745408*a(n-46)-7968601027491098112*a(n-47)-33085684542175014912*a(n-48)+118058533635462125568*a(n-49)+39512750093838385152*a(n-50)-133590905508776103936*a(n-51)+364281432743469293568*a(n-52)+210319981915211218944*a(n-53)-398799763680154927104*a(n-54)+584019030389541470208*a(n-55)+520541510369258962944*a(n-56)-963173390160429711360*a(n-57)+727847118498482749440*a(n-58)+1555489330103731617792*a(n-59)-1245394791974180487168*a(n-60)-2068309943964889251840*a(n-61)+3643324883940909514752*a(n-62)+977068899261735763968*a(n-63)-10300424116071586332672*a(n-64)+2413639308219506491392*a(n-65)+4473242080388271046656*a(n-66)-4528774523925118844928*a(n-67)-5197024805196801245184*a(n-68)+1969790675024043048960*a(n-69)+15024227251673980993536*a(n-70)-7316920907168275759104*a(n-71)-3317013767167313707008*a(n-72)+6475212296736963821568*a(n-73)+1255155103368329822208*a(n-74)-2202144678073300156416*a(n-75)-6121478755531981062144*a(n-76)+2506656217055474221056*a(n-77)+627860856482970992640*a(n-78)+899258775091739099136*a(n-79)-534694406811304329216*a(n-80)
EXAMPLE
Some solutions for 6X4 with a(1,1)=0
..0..0..0..0....0..0..0..1....0..0..0..1....0..0..0..0....0..0..0..1
..1..0..1..0....0..0..0..0....0..0..1..1....0..0..0..1....0..1..0..1
..0..0..0..0....1..1..1..1....0..0..0..0....1..1..0..1....0..0..1..0
..0..1..1..0....1..0..0..0....0..0..1..1....1..1..0..1....1..0..1..1
..1..0..0..0....1..0..1..1....1..1..1..1....1..1..1..0....1..1..0..0
..0..0..1..0....1..0..0..0....1..0..0..1....0..1..0..0....1..0..1..1
CROSSREFS
Sequence in context: A035863 A045127 A210786 * A235906 A364184 A204745
KEYWORD
nonn
AUTHOR
R. H. Hardin Mar 16 2011
STATUS
approved