login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Half the number of (n+2)X4 binary arrays with no 3X3 subblock having a sum equal to any horizontal or vertical neighbor 3X3 subblock sum
1

%I #5 Mar 31 2012 12:36:10

%S 1408,8768,53728,322128,2092928,13520976,86157696,548059536,

%T 3471855360,21859425872,139526151616,888660941136,5639390386304,

%U 35875799655952,227944117135296,1445770705741904,9197000455294016,58463779006676944

%N Half the number of (n+2)X4 binary arrays with no 3X3 subblock having a sum equal to any horizontal or vertical neighbor 3X3 subblock sum

%C Column 2 of A187964

%H R. H. Hardin, <a href="/A187957/b187957.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n)=5*a(n-1)+6*a(n-2)+99*a(n-3)-517*a(n-4)-346*a(n-5)+13033*a(n-6)-57833*a(n-7)-68926*a(n-8)-836599*a(n-9)+4655561*a(n-10)+3070398*a(n-11)-36610155*a(n-12)+119400299*a(n-13)+173417410*a(n-14)+1824238221*a(n-15)-9638608359*a(n-16)-6192477994*a(n-17)+17695576415*a(n-18)+7002784613*a(n-19)-63838801602*a(n-20)-959349540229*a(n-21)+4083676919591*a(n-22)+2355193730782*a(n-23)-4198619892256*a(n-24)-7250034805352*a(n-25)+7731581573048*a(n-26)+194164612372656*a(n-27)-720965905404336*a(n-28)-368111638621968*a(n-29)+652720485880384*a(n-30)+319887464830272*a(n-31)-654416911165280*a(n-32)-17098847044080224*a(n-33)+58688760015389280*a(n-34)+24593110863134208*a(n-35)-58350586496272896*a(n-36)+77161628915051776*a(n-37)+67185400310475904*a(n-38)+594795385181513472*a(n-39)-1933364516082720768*a(n-40)-489171971302665472*a(n-41)+2599243116793135360*a(n-42)-6709901327757569280*a(n-43)-3388850463215656960*a(n-44)-1255020362386550016*a(n-45)+7714005820133745408*a(n-46)-7968601027491098112*a(n-47)-33085684542175014912*a(n-48)+118058533635462125568*a(n-49)+39512750093838385152*a(n-50)-133590905508776103936*a(n-51)+364281432743469293568*a(n-52)+210319981915211218944*a(n-53)-398799763680154927104*a(n-54)+584019030389541470208*a(n-55)+520541510369258962944*a(n-56)-963173390160429711360*a(n-57)+727847118498482749440*a(n-58)+1555489330103731617792*a(n-59)-1245394791974180487168*a(n-60)-2068309943964889251840*a(n-61)+3643324883940909514752*a(n-62)+977068899261735763968*a(n-63)-10300424116071586332672*a(n-64)+2413639308219506491392*a(n-65)+4473242080388271046656*a(n-66)-4528774523925118844928*a(n-67)-5197024805196801245184*a(n-68)+1969790675024043048960*a(n-69)+15024227251673980993536*a(n-70)-7316920907168275759104*a(n-71)-3317013767167313707008*a(n-72)+6475212296736963821568*a(n-73)+1255155103368329822208*a(n-74)-2202144678073300156416*a(n-75)-6121478755531981062144*a(n-76)+2506656217055474221056*a(n-77)+627860856482970992640*a(n-78)+899258775091739099136*a(n-79)-534694406811304329216*a(n-80)

%e Some solutions for 6X4 with a(1,1)=0

%e ..0..0..0..0....0..0..0..1....0..0..0..1....0..0..0..0....0..0..0..1

%e ..1..0..1..0....0..0..0..0....0..0..1..1....0..0..0..1....0..1..0..1

%e ..0..0..0..0....1..1..1..1....0..0..0..0....1..1..0..1....0..0..1..0

%e ..0..1..1..0....1..0..0..0....0..0..1..1....1..1..0..1....1..0..1..1

%e ..1..0..0..0....1..0..1..1....1..1..1..1....1..1..1..0....1..1..0..0

%e ..0..0..1..0....1..0..0..0....1..0..0..1....0..1..0..0....1..0..1..1

%K nonn

%O 1,1

%A _R. H. Hardin_ Mar 16 2011