

A187218


a(n) is the coefficient of the 4th term in the nth BruinierOno "partition polynomial" H_n(x), if such coefficient is an integer, otherwise a(n)=0.


5




OFFSET

1,1


COMMENTS

See the BruinierOno paper, chapter 5 "Examples".
The coefficient of the second term in the nth BruinierOno "partition polynomial" H_n(x) is A183011(n).
Is there a closed formula for a(n)?


LINKS

Table of n, a(n) for n=1..4.
J. H. Bruinier and K. Ono, Algebraic formulas for the coefficients of halfintegral weight harmonic weak Maass forms


EXAMPLE

In the BruinierOno paper the first "partition polynomial" is H_1(x) = x^3  23*x^2 + (3592/23)*x  419 (See chapter 5 "Examples"), so a(1) = 419.


CROSSREFS

Cf. A183010, A183011, A187206.
Sequence in context: A142733 A060230 A130737 * A239253 A061118 A097822
Adjacent sequences: A187215 A187216 A187217 * A187219 A187220 A187221


KEYWORD

nonn,hard,more


AUTHOR

Omar E. Pol, Jul 09 2011


STATUS

approved



