%I #13 Mar 30 2012 17:34:05
%S 419,65838,723721,9455070
%N a(n) is the coefficient of the 4th term in the n-th Bruinier-Ono "partition polynomial" H_n(x), if such coefficient is an integer, otherwise a(n)=0.
%C See the Bruinier-Ono paper, chapter 5 "Examples".
%C The coefficient of the second term in the n-th Bruinier-Ono "partition polynomial" H_n(x) is A183011(n).
%C Is there a closed formula for a(n)?
%H J. H. Bruinier and K. Ono, <a href="http://www.aimath.org/news/partition/brunier-ono.pdf">Algebraic formulas for the coefficients of half-integral weight harmonic weak Maass forms</a>
%e In the Bruinier-Ono paper the first "partition polynomial" is H_1(x) = x^3 - 23*x^2 + (3592/23)*x - 419 (See chapter 5 "Examples"), so a(1) = 419.
%Y Cf. A183010, A183011, A187206.
%K nonn,hard,more
%O 1,1
%A _Omar E. Pol_, Jul 09 2011