login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186686
Triangle T(n,k) of the coefficients [x^n] x^k*(x^5+3*x^4+4*x^3+3*x^2+2*x+1)^k, 1<=k<=n.
1
1, 2, 1, 3, 4, 1, 4, 10, 6, 1, 3, 20, 21, 8, 1, 1, 31, 56, 36, 10, 1, 0, 38, 120, 120, 55, 12, 1, 0, 38, 213, 322, 220, 78, 14, 1, 0, 30, 321, 724, 705, 364, 105, 16, 1, 0, 17, 414, 1400, 1897, 1353, 560, 136, 18, 1, 0, 6, 456, 2364, 4410, 4218, 2366, 816, 171, 20, 1, 0, 1, 427, 3515, 9020, 11374, 8365, 3860, 1140, 210, 22, 1
OFFSET
1,2
LINKS
V. V. Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties , arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
T(n,k) = Sum_{s=k..n} binomial(s,n-s) * Sum_{j=0..k} binomial(k,j) * binomial(j,s-3*k+2*j).
EXAMPLE
1,
2,1,
3,4,1,
4,10,6,1,
3,20,21,8,1,
1,31,56,36,10,1,
0,38,120,120,55,12,1,
0,38,213,322,220,78,14,1,
0,30,321,724,705,364,105,16,1
MAPLE
A186686 := proc(n, k) x*(1+2*x+3*x^2+4*x^3+3*x^4+x^5) ; expand(%^k) ; coeftayl(%, x=0, n) ; end proc: # R. J. Mathar, Mar 04 2011
MATHEMATICA
T[n_, k_] := Sum[Binomial[s, n-s]*Sum[Binomial[k, j]*Binomial[j, s - 3*k + 2*j], {j, 0, k}], {s, k, n}];
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 29 2017 *)
CROSSREFS
Sequence in context: A204213 A143326 A327086 * A361045 A053122 A078812
KEYWORD
nonn,tabl,easy
AUTHOR
Vladimir Kruchinin, Feb 28 2011
STATUS
approved