login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) of the coefficients [x^n] x^k*(x^5+3*x^4+4*x^3+3*x^2+2*x+1)^k, 1<=k<=n.
1

%I #22 Nov 29 2017 15:13:57

%S 1,2,1,3,4,1,4,10,6,1,3,20,21,8,1,1,31,56,36,10,1,0,38,120,120,55,12,

%T 1,0,38,213,322,220,78,14,1,0,30,321,724,705,364,105,16,1,0,17,414,

%U 1400,1897,1353,560,136,18,1,0,6,456,2364,4410,4218,2366,816,171,20,1,0,1,427,3515,9020,11374,8365,3860,1140,210,22,1

%N Triangle T(n,k) of the coefficients [x^n] x^k*(x^5+3*x^4+4*x^3+3*x^2+2*x+1)^k, 1<=k<=n.

%H V. V. Kruchinin, <a href="http://arxiv.org/abs/1009.2565">Composition of ordinary generating functions</a>, arXiv:1009.2565 [math.CO], 2010.

%H Vladimir Kruchinin, D. V. Kruchinin, <a href="http://arxiv.org/abs/1103.2582">Composita and their properties </a>, arXiv:1103.2582 [math.CO], 2011-2013.

%F T(n,k) = Sum_{s=k..n} binomial(s,n-s) * Sum_{j=0..k} binomial(k,j) * binomial(j,s-3*k+2*j).

%e 1,

%e 2,1,

%e 3,4,1,

%e 4,10,6,1,

%e 3,20,21,8,1,

%e 1,31,56,36,10,1,

%e 0,38,120,120,55,12,1,

%e 0,38,213,322,220,78,14,1,

%e 0,30,321,724,705,364,105,16,1

%p A186686 := proc(n,k) x*(1+2*x+3*x^2+4*x^3+3*x^4+x^5) ; expand(%^k) ; coeftayl(%,x=0,n) ; end proc: # _R. J. Mathar_, Mar 04 2011

%t T[n_, k_] := Sum[Binomial[s, n-s]*Sum[Binomial[k, j]*Binomial[j, s - 3*k + 2*j], {j, 0, k}], {s, k, n}];

%t Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Nov 29 2017 *)

%K nonn,tabl,easy

%O 1,2

%A _Vladimir Kruchinin_, Feb 28 2011