login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186354
Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f(i)=3i and g(j)=j(j+1)/2 (triangular number). Complement of A186355.
2
2, 4, 6, 8, 9, 11, 12, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 39, 40, 41, 42, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135
OFFSET
1,1
COMMENTS
See A186350.
EXAMPLE
First, write
...3..6..9....12..15..18..21..24.. (3*i)
1..3..6....10.....15......21.... (triangular)
Then replace each number by its rank, where ties are settled by ranking 3i before the triangular:
a=(2,4,6,8,9,11,12,14,15,17,....)=A186354
b=(1,3,5,7,10,13,16,20,24,28,...)=A186355.
MATHEMATICA
(* adjusted joint rank sequences a and b, using general formula for ranking 1st degree u*n+v and 2nd degree x*n^2+y*n+z *)
d=1/2; u=3; v=0; x=1/2; y=1/2; (* odds and triangular *)
h[n_]:=(-y+(4x(u*n+v-d)+y^2)^(1/2))/(2x);
a[n_]:=n+Floor[h[n]]; (* rank of u*n+v *)
k[n_]:=(x*n^2+y*n-v+d)/u;
b[n_]:=n+Floor[k[n]]; (* rank of x*n^2+y*n+d *)
Table[a[n], {n, 1, 120}] (* A186354 *)
Table[b[n], {n, 1, 100}] (* A186355 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 18 2011
STATUS
approved