login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186148
Rank of (1/4)n^3 when {(1/4)i^3: i>=1} and {j^2>: j>=1} are jointly ranked with (1/4)i^3 before j^2 when (1/4)i^3=j^2. Complement of A186149.
3
1, 3, 5, 7, 10, 13, 16, 19, 22, 25, 29, 32, 36, 40, 44, 47, 52, 56, 60, 64, 69, 73, 78, 82, 87, 92, 97, 102, 107, 112, 117, 122, 127, 133, 138, 143, 149, 155, 160, 166, 172, 178, 183, 189, 195, 201, 208, 214, 220, 226, 233, 239, 245, 252, 258, 265, 272, 278, 285, 292, 299, 306, 313, 319, 327, 334, 341, 348, 355, 362, 370, 377, 384, 392, 399, 407, 414, 422, 430, 437, 445, 453, 461, 468, 476, 484, 492, 500
OFFSET
1,2
COMMENTS
See A187645.
FORMULA
a(n) = n + floor(((1/4)*n^3 - 1/8)^(1/2)).
EXAMPLE
Write preliminary separate rankings:
1/4...2....27/4....16.....125/4...
....1...4.......9..16..25........36..49
Then replace each number by its rank, where ties are settled by ranking the top number before the bottom.
MATHEMATICA
d=1/8; u=1/4; v=1; p=3; q=2;
h[n_]:=((u*n^p-d)/v)^(1/q);
a[n_]:=n+Floor[h[n]]; (* rank of u*n^p *)
k[n_]:=((v*n^q+d)/u)^(1/p);
b[n_]:=n+Floor[k[n]]; (* rank of v*n^q *)
Table[a[n], {n, 1, 100}] (* A186148 *)
Table[b[n], {n, 1, 100}] (* A186149 *)
CROSSREFS
Sequence in context: A213510 A130257 A276498 * A079511 A092757 A062430
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 13 2011
STATUS
approved