login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185661
Smallest set containing 1 and closed under the operations x->2x+1, x->3x+1, x->6x+1.
2
1, 3, 4, 7, 9, 10, 13, 15, 19, 21, 22, 25, 27, 28, 31, 39, 40, 43, 45, 46, 51, 55, 57, 58, 61, 63, 64, 67, 76, 79, 81, 82, 85, 87, 91, 93, 94, 103, 111, 115, 117, 118, 121, 123, 127, 129, 130, 133, 135, 136, 139, 151, 153, 154, 159, 163, 165, 166, 169, 171, 172, 175, 183, 184, 187, 189, 190, 193, 202
OFFSET
1,2
COMMENTS
This sequence has density zero.
To illustrate the density: there are 2011 terms up to 10^4, 14878 terms up to 10^5, 117671 terms up to 10^6, 913314 terms up to 10^7, 7176461 terms up to 10^8, 56591334 terms up to 10^9, and 445290307 terms up to 10^10. - Charles R Greathouse IV, Jul 09 2017
There are 3560822110 terms up to 10^11, 27907016447 terms up to 10^12, 223533750957 terms up to 10^13, 1772572144707 terms up to 10^14, ..., roughly 7.952916868743154^m/log(10) terms up to 10^m. - Yi Yang, Aug 29 2017
REFERENCES
J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010. See pp. 6, 280.
MATHEMATICA
terms = 69; Clear[f]; f[n_] := f[n] = With[{lst = NestList[{2 # + 1, 3 # + 1, 6 # + 1}&, 1, n] // Flatten // Union}, If[Length[lst] <= terms, lst, Take[lst, terms]]]; f[1]; f[n = 2]; While[f[n] != f[n-1], Print["n = ", n]; n++]; A185661 = f[n] (* Jean-François Alcover, May 17 2017 *)
PROG
(PARI) list(lim)=my(v=List([1]), i, t); while(i++<=#v, t=2*v[i]+1; if(t>lim, next); listput(v, t); t+=v[i]; if(t>lim, next); listput(v, t); t+=t-1; if(t>lim, next); listput(v, t)); Set(v) \\ Charles R Greathouse IV, Jul 09 2017
(PARI) list(lim)=my(v=List([1]), m=Map(), t, i); while(i++<=#v, t=2*v[i]+1; if(t>lim, next); if(!mapisdefined(m, t), mapput(m, t, 0); listput(v, t)); t+=v[i]; if(t>lim, next); if(!mapisdefined(m, t), mapput(m, t, 0); listput(v, t)); t+=t-1; if(t<=lim && !mapisdefined(m, t), mapput(m, t, 0); listput(v, t))); m=0; Set(v) \\ Charles R Greathouse IV, Jul 09 2017
CROSSREFS
Cf. A002977.
Sequence in context: A032726 A029739 A005098 * A276786 A002977 A024799
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 08 2011
EXTENSIONS
Name clarified by Charles R Greathouse IV, Jul 09 2017
STATUS
approved