OFFSET
1,2
LINKS
I. J. Zucker, Madelung constants and lattice sums for invariant cubic lattice complexes and certain tetragonal structures, J. Phys. A: Math. Gen. 8 (11) (1975) 1734, variable f(1).
I. J. Zucker, Functional equations for poly-dimensional zeta functions and the evaluation of Madelung constants, J. Phys. A: Math. Gen. 9 (4) (1976) 499, variable f(1).
FORMULA
Equals 4*Sum_{n>=1, p>=1} cosech(d*Pi)/d where d = sqrt((n-1/2)^2 + (p-1/2)^2).
MATHEMATICA
digits = 105; Clear[f]; f[n_, p_] := f[n, p] = (d = Sqrt[(n - 1/2)^2 + (p - 1/2)^2]; (Csch[d*Pi]/d) // N[#, digits + 10] &); f[m_] := f[m] = 4*Sum[f[n, p], {n, 1, m}, {p, 1, m}] // RealDigits[#, 10, digits + 10] & // First; f[0]; f[m = 10]; While[f[m] != f[m - 10], Print[m]; m = m + 10]; f[m][[1 ;; digits]] (* Jean-François Alcover, Feb 21 2013 *)
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
R. J. Mathar, Jan 31 2011
EXTENSIONS
More terms from Jean-François Alcover, Feb 21 2013
STATUS
approved