OFFSET
1,2
COMMENTS
The prime at the sum symbol means the term at m=n=p=0 is omitted.
LINKS
Y. Sakamoto, Madelung constants of simple crystals expressed in terms of Born's basic potentials of 15 figures, J. Chem. Phys. 28 (1958) 164, variable Pi_3.
I. J. Zucker, Madelung constants and lattice sums for invariant cubic lattice complexes and certain tetragonal structures, J. Phys. A: Math. Gen. 8 (11) (1975) 1734, variable c(1).
I. J. Zucker, Functional equations for poly-dimensional zeta functions and the evaluation of Madelung constants, J. Phys. A: Math. Gen. 9 (4) (1976) 499, variable c(1).
FORMULA
Equals Pi/2 - 9*log(2)/2 + 4*Sum_{p>=1, n>=1} (1+(-1)^n+(-1)^(n+p))*cosech(d*Pi)/d where d = sqrt(n^2 + p^2).
EXAMPLE
1.48038980651222259790776170...
MATHEMATICA
digits = 105; Clear[f]; f[n_, p_] := f[n, p] = (s = Sqrt[n^2 + p^2]; ((1 + (-1)^n + (-1)^(n + p))*Csch[s*Pi])/s // N[#, digits+10]&); f[m_] := f[m] = Pi/2 - 9*Log[2]/2 + 4*Sum[f[n, p], {n, 1, m}, {p, 1, m}] // RealDigits[#, 10, digits + 10]& // First; f[0]; f[m=10]; While[ f[m] != f[m-10], Print[m]; m = m+10]; f[m][[1 ;; digits]] (* Jean-François Alcover, Feb 20 2013 *)
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
R. J. Mathar, Jan 31 2011
EXTENSIONS
More terms from Jean-François Alcover, Feb 20 2013
STATUS
approved