OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..320
FORMULA
Self-convolution of A185401:
A185401(n) = (7^n/n!^2) * Product_{k=0..n-1} (14k+2)*(14k+5).
a(n) ~ cos(3*Pi/14) * 2^(2*n) * 7^(3*n) / (Pi*n)^(3/2). - Vaclav Kotesovec, Oct 23 2020
EXAMPLE
G.f.: A(x) = 1 + 140*x + 79380*x^2 + 62563200*x^3 +...
A(x)^(1/2) = 1 + 70*x + 37240*x^2 + 28674800*x^3 +...+ A185401(n)*x^n +...
MATHEMATICA
Table[Binomial[2n, n] 7^n/(n!)^2 Product[(7k+2)(7k+5), {k, 0, n-1}], {n, 0, 10}] (* Harvey P. Dale, May 10 2012 *)
PROG
(PARI) {a(n)=(2*n)!/n!^2*(7^n/n!^2)*prod(k=0, n-1, (7*k+2)*(7*k+5))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 26 2011
STATUS
approved