login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185402
a(n) = C(2n,n) * (7^n/n!^2) * Product_{k=0..n-1} (7k+2)*(7k+5).
3
1, 140, 79380, 62563200, 57288340200, 57169180452384, 60324072262534080, 66193973824733314560, 74770747698820830356700, 86365239335124673905181200, 101541339191092781603799640464
OFFSET
0,2
LINKS
FORMULA
Self-convolution of A185401:
A185401(n) = (7^n/n!^2) * Product_{k=0..n-1} (14k+2)*(14k+5).
a(n) ~ cos(3*Pi/14) * 2^(2*n) * 7^(3*n) / (Pi*n)^(3/2). - Vaclav Kotesovec, Oct 23 2020
EXAMPLE
G.f.: A(x) = 1 + 140*x + 79380*x^2 + 62563200*x^3 +...
A(x)^(1/2) = 1 + 70*x + 37240*x^2 + 28674800*x^3 +...+ A185401(n)*x^n +...
MATHEMATICA
Table[Binomial[2n, n] 7^n/(n!)^2 Product[(7k+2)(7k+5), {k, 0, n-1}], {n, 0, 10}] (* Harvey P. Dale, May 10 2012 *)
PROG
(PARI) {a(n)=(2*n)!/n!^2*(7^n/n!^2)*prod(k=0, n-1, (7*k+2)*(7*k+5))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 26 2011
STATUS
approved