login
A185400
Numbers with property that the digital sum plus the product of the digits is a power of 2.
0
1, 2, 4, 8, 10, 20, 22, 40, 80, 100, 101, 103, 107, 110, 111, 113, 117, 130, 131, 133, 137, 170, 171, 173, 177, 200, 202, 206, 220, 260, 301, 305, 310, 311, 313, 317, 331, 350, 371, 400, 404, 440, 503, 530, 602, 620, 701, 709, 710, 711, 713, 717, 731, 771, 790, 800, 808, 880, 907, 970, 1000, 1001, 1003, 1007, 1010, 1012, 1016
OFFSET
1,2
EXAMPLE
371 is in the sequence because (3+7+1) + (3*7*1) = 11 + 21 = 32 = 2^5.
116291 is in the sequence because (1+1+6+2+9+1) + (1*1*6*2*9*1) = 20 + 108 = 128 = 2^7.
MAPLE
A007953 := proc(n) add(d, d=convert(n, base, 10)) ; end proc:
A007954 := proc(n) mul(d, d=convert(n, base, 10)) ; end proc:
A061762 := proc(n) A007953(n)+A007954(n) ; end proc:
isA000079 := proc(n) if n < 1 then false; elif n = 1 then true; else if type(n, 'even') then is( nops(numtheory[factorset](n)) = 1) ; else false; end if; end if; end proc:
isA185400 := proc(n) isA000079(A061762(n)) ; end proc:
for n from 1 to 1300 do if isA185400(n) then printf("%a, ", n) ; end if; end do: # R. J. Mathar, Feb 08 2011
MATHEMATICA
pwrs2Q[n_]:=Module[{idn=IntegerDigits[n], x, y}, x=Total[idn]+Times@@idn; y=Round[Log[x]/Log[2]]; 2^y==x]
Select[Range[1100], pwrs2Q] (* Harvey P. Dale, Feb 16 2011 *)
CROSSREFS
Sequence in context: A173816 A287266 A306719 * A099942 A033092 A177909
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Feb 03 2011
STATUS
approved