login
A184910
n+floor(nr/s)+floor(nr/t), where r=2^(1/4), s=2^(1/2), t=2^(3/4).
3
2, 5, 8, 11, 14, 17, 21, 23, 26, 29, 32, 35, 38, 42, 45, 47, 50, 53, 56, 59, 63, 66, 69, 71, 74, 77, 81, 84, 87, 90, 92, 95, 98, 102, 105, 108, 111, 114, 116, 119, 123, 126, 129, 132, 135, 138, 140, 144, 147, 150, 153, 156, 159, 163, 165, 168, 171, 174, 177, 180, 184, 186, 189, 192, 195, 198, 201, 205, 208, 210, 213, 216, 219, 223, 226, 229, 232, 234, 237, 240, 244, 247, 250, 253, 255, 258, 261, 265, 268, 271, 274, 277, 279, 282, 286, 289, 292, 295, 298, 301, 304, 307, 310, 313, 316, 319, 322, 326, 328, 331, 334, 337, 340, 343, 347, 349, 352, 355, 358, 361
OFFSET
1,1
COMMENTS
The sequences A184909, A184910, A184911, partition the positive integers:
A184909: 3,6,10,13,17,21,24,28,32,35,...
A184910: 2,5,8,11,14,18,20,23,26,29,,...
A184911: 1,4,7,9,12,15,16,19,22,25,27,...
See A184812.
MATHEMATICA
r=2^(1/4); s=2^(1/2); t=2^(3/4);
a[n_]:=n+Floor[n*s/r]+Floor[n*t/r];
b[n_]:=n+Floor[n*r/s]+Floor[n*t/s];
c[n_]:=n+Floor[n*r/t]+Floor[n*s/t];
Table[a[n], {n, 1, 120}] (* A184909 *)
Table[b[n], {n, 1, 120}] (* A184910 *)
Table[c[n], {n, 1, 120}] (* A184911 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 25 2011
STATUS
approved