login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184906
n+floor(nr/t)+floor(ns/t), where r=2^(1/2), s=2^(1/3), t=2^(1/5).
3
3, 6, 9, 12, 16, 19, 22, 25, 29, 32, 36, 39, 43, 46, 49, 52, 55, 59, 62, 65, 69, 73, 76, 79, 82, 86, 89, 92, 95, 98, 103, 106, 109, 112, 116, 119, 122, 125, 129, 132, 135, 139, 142, 146, 149, 152, 155, 159, 162, 165, 168, 173, 176, 179, 182, 185, 189, 192, 195, 198, 202, 206, 209, 212, 216, 219, 222, 225, 228, 232, 235, 238, 242, 246, 249, 252, 255, 259, 262, 265, 268, 271, 276, 279, 282, 285, 289, 292, 295, 298, 302, 305, 309, 312, 315, 319, 322, 325, 328, 332, 335, 338, 341, 346, 349, 352, 355, 358, 362, 365, 368, 371, 375, 379, 382, 385, 389, 392, 395, 398
OFFSET
1,1
COMMENTS
The sequences A184904, A184905, A184906, partition the positive integers:
A184904: 1,4,7,10,13,15,18,21,24,26,...
A184905: 2,5,8,11,14,17,20,23,27,30,...
A184906: 3,6,9,12,16,19,22,25,29,32,...
See A184812.
MATHEMATICA
r=2^(1/2); s=2^(1/3); t=2^(1/5);
a[n_]:=n+Floor[n*s/r]+Floor[n*t/r];
b[n_]:=n+Floor[n*r/s]+Floor[n*t/s];
c[n_]:=n+Floor[n*r/t]+Floor[n*s/t];
Table[a[n], {n, 1, 120}] (* A184904 *)
Table[b[n], {n, 1, 120}] (* A184905 *)
Table[c[n], {n, 1, 120}] (* A184906 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 25 2011
STATUS
approved