OFFSET
1,1
COMMENTS
Is a(n) = A066023(n) for n>=2?
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
FORMULA
a(n) = floor(1/{(4+n^4)^(1/4)}), where {}=fractional part.
It appears that a(n)=4a(n-1)-6a(n-2)+4a(n-3)-a(n-4) for n>=6 and that a(n)=n^3 for n>=2.
Empirical g.f.: x*(x^4-4*x^3+7*x^2+2) / (x-1)^4. - Colin Barker, Sep 06 2014
MATHEMATICA
p[n_]:=FractionalPart[(n^4+4)^(1/4)];
q[n_]:=Floor[1/p[n]]; Table[q[n], {n, 1, 80}]
FindLinearRecurrence[Table[q[n], {n, 1, 1000}]]
Join[{2}, LinearRecurrence[{4, -6, 4, -1}, {8, 27, 64, 125}, 54]] (* Ray Chandler, Aug 01 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 18 2011
STATUS
approved