login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184630
Floor(1/{(6+n^4)^(1/4)}), where {}=fractional part.
1
1, 6, 18, 43, 83, 144, 228, 341, 486, 666, 887, 1152, 1464, 1829, 2250, 2730, 3275, 3888, 4572, 5333, 6174, 7098, 8111, 9216, 10416, 11717, 13122, 14634, 16259, 18000, 19860, 21845, 23958, 26202, 28583, 31104, 33768, 36581, 39546, 42666, 45947, 49392, 53004, 56789, 60750, 64890, 69215, 73728, 78432, 83333, 88434
OFFSET
1,2
FORMULA
a(n)=floor(1/{(6+n^4)^(1/4)}), where {}=fractional part.
It appears that a(n)=3a(n-1)-3a(n-2)+2a(n-3)-3a(n-4)+3a(n-5)-a(n-6) for n>=11, which implies a(n) = (2*n^3-1+A049347(n))/3 for n>=5.
MATHEMATICA
p[n_]:=FractionalPart[(n^4+6)^(1/4)]; q[n_]:=Floor[1/p[n]];
Table[q[n], {n, 1, 80}]
FindLinearRecurrence[Table[q[n], {n, 1, 1000}]]
Join[{1, 6, 18, 43}, LinearRecurrence[{3, -3, 2, -3, 3, -1}, {83, 144, 228, 341, 486, 666}, 47]] (* Ray Chandler, Aug 02 2015 *)
CROSSREFS
Cf. A184536.
Sequence in context: A272250 A272700 A191101 * A009957 A344992 A011929
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 18 2011
STATUS
approved