login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289864
Number of cliques in the n-triangular honeycomb queen graph.
0
2, 8, 27, 72, 169, 367, 764, 1553, 3120, 6234, 12433, 24790, 49451, 98705, 197130, 393879, 787258, 1573876, 3146951, 6292916, 12584637, 25167843, 50333992, 100665997, 201329684, 402656702, 805310349, 1610617218, 3221230495, 6442456549, 12884908118, 25769810675
OFFSET
1,1
COMMENTS
Here, cliques means any complete subgraph (not just of maximum size).
LINKS
Eric Weisstein's World of Mathematics, Clique
FORMULA
a(n) = (4*n^3 - 18*n^2 - 68*n - 79 - (-1)^n + 3*2^(n + 5))/16.
a(n) = 5*a(n-1)-8*a(n-2)+2*a(n-3)+7*a(n-4)-7*a(n-5)+2*a(n-6).
G.f.: (x*(-2 + 2*x - 3*x^2 + 3*x^3 + 5*x^4 - 2*x^5))/((-1 + x)^4*(-1 + x + 2*x^2)).
MATHEMATICA
Table[(4 n^3 - 18 n^2 - 68 n - 79 - (-1)^n + 3 2^(n + 5))/16, {n, 20}]
LinearRecurrence[{5, -8, 2, 7, -7, 2}, {2, 8, 27, 72, 169, 367}, 20]
CoefficientList[Series[(-2 + 2 x - 3 x^2 + 3 x^3 + 5 x^4 - 2 x^5)/((-1 + x)^4 (-1 + x + 2 x^2)), {x, 0, 20}], x]
CROSSREFS
Sequence in context: A347595 A184628 A092071 * A290056 A100505 A102759
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Jul 13 2017
STATUS
approved