login
A183217
Complement of the pentagonal numbers.
3
2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93
OFFSET
1,1
FORMULA
a(n) = n + floor(1/2+(2n/3)^(1/2)).
a(n) = n + A111651(n). - Kevin Ryde, Aug 31 2024
EXAMPLE
The pentagonal numbers A000326 = (1,5,12,22,35,...), so that this sequence = (2,3,4,6,7,8,9,10,11,13,14,...).
MATHEMATICA
Table[n+Floor[1/2+(2n/3)^(1/2)], {n, 100}]
PROG
(PARI) a(n) = n + sqrtint(24*n)\/6; \\ Kevin Ryde, Aug 31 2024
(Python)
from math import isqrt
def A183217(n): return n+(isqrt((n<<3)//3)+1>>1) # Chai Wah Wu, Oct 05 2024
CROSSREFS
Sequence in context: A048263 A141451 A285211 * A047303 A057906 A039214
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 01 2011
STATUS
approved