login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047303
Numbers that are congruent to {0, 1, 2, 3, 4, 6} mod 7.
1
0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 76
OFFSET
1,3
COMMENTS
Complement of A017041. - Michel Marcus, Sep 08 2015
FORMULA
G.f.: x^2*(1+x+x^2+x^3+2*x^4+x^5) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Sep 07 2015: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
a(n) = n + 1 + floor((n-2)/6) - ceiling((n-1)/6) + floor((n-1)/6) - ceiling(n/6) + floor(n/6). (End)
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = (42*n - 51 + 3*cos(n*Pi) + 4*sqrt(3)*cos((1-4*n)*Pi/6) + 12*sin((1+2*n)*Pi/6))/36.
a(6k) = 7k-1, a(6k-1) = 7k-3, a(6k-2) = 7k-4, a(6k-3) = 7k-5, a(6k-4) = 7k-6, a(6k-5) = 7k-7. (End)
MAPLE
A047303:=n->n+1+floor((n-2)/6)-ceil((n-1)/6)+floor((n-1)/6)-ceil(n/6)+floor(n/6): seq(A047303(n), n=1..100); # Wesley Ivan Hurt, Sep 07 2015
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 1, 2, 3, 4, 6}, Mod[#, 7]] &] (* Vincenzo Librandi, Sep 08 2015 *)
LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 1, 2, 3, 4, 6, 7}, 80] (* Harvey P. Dale, Sep 24 2016 *)
PROG
(Magma) [n: n in [0..100] | n mod 7 in [0..4] cat [6]]; // Vincenzo Librandi, Sep 08 2015
CROSSREFS
Cf. A017041 (7n+5).
Sequence in context: A141451 A285211 A183217 * A057906 A039214 A032866
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vincenzo Librandi, Sep 08 2015
STATUS
approved