OFFSET
1,3
COMMENTS
Complement of A017041. - Michel Marcus, Sep 08 2015
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).
FORMULA
G.f.: x^2*(1+x+x^2+x^3+2*x^4+x^5) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Sep 07 2015: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
a(n) = n + 1 + floor((n-2)/6) - ceiling((n-1)/6) + floor((n-1)/6) - ceiling(n/6) + floor(n/6). (End)
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = (42*n - 51 + 3*cos(n*Pi) + 4*sqrt(3)*cos((1-4*n)*Pi/6) + 12*sin((1+2*n)*Pi/6))/36.
a(6k) = 7k-1, a(6k-1) = 7k-3, a(6k-2) = 7k-4, a(6k-3) = 7k-5, a(6k-4) = 7k-6, a(6k-5) = 7k-7. (End)
MAPLE
A047303:=n->n+1+floor((n-2)/6)-ceil((n-1)/6)+floor((n-1)/6)-ceil(n/6)+floor(n/6): seq(A047303(n), n=1..100); # Wesley Ivan Hurt, Sep 07 2015
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 1, 2, 3, 4, 6}, Mod[#, 7]] &] (* Vincenzo Librandi, Sep 08 2015 *)
LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 1, 2, 3, 4, 6, 7}, 80] (* Harvey P. Dale, Sep 24 2016 *)
PROG
(Magma) [n: n in [0..100] | n mod 7 in [0..4] cat [6]]; // Vincenzo Librandi, Sep 08 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Vincenzo Librandi, Sep 08 2015
STATUS
approved