OFFSET
0,5
COMMENTS
The matrix inverse starts
1;
-1,1;
3,-4,1;
-7,11,-5,1;
15,-26,16,-6,1;
-31,57,-42,22,-7,1;
63,-120,99,-64,29,-8,1;
-127,247,-219,163,-93,37,-9,1;
255,-502,466,-382,256,-130,46,-10,1;
...perhaps related to A054143. - R. J. Mathar, Mar 29 2013
LINKS
R. Kehinde, A. Umar, On the semigroup of partial isometries of a finite chain, arXiv:1101.0049
FORMULA
T(n,0)=1. T(n,k)=(2*n-k+1)*C(n,k)/(k+1) if k>0.
EXAMPLE
T(3,2)=5 because there are exactly 5 order-preserving partial isometries (on a 3-chain) of height 2, namely: (1,2)-->(1,2); (1,2)-->(2,3); (2,3)-->(1,2); (2,3)-->(2,3); (1,3)-->(1,3), the mappings are coordinate-wise.
Triangle begins as:
1;
1, 1;
1, 4, 1;
1, 9, 5, 1;
1, 16, 14, 6, 1;
1, 25, 30, 20, 7, 1;
1, 36, 55, 50, 27, 8, 1;
1, 49, 91, 105, 77, 35, 9, 1;
PROG
(PARI) T(n, k)=if(k==0, 1, (2*n-k+1)*binomial(n, k)/(k+1));
for(n=0, 17, for(k=0, n, print1(T(n, k), ", ")))
CROSSREFS
KEYWORD
AUTHOR
Abdullahi Umar, Dec 27 2010
STATUS
approved