login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) is the number of order-preserving partial isometries of an n-chain of height k (height of alpha = |Im(alpha)|).
1

%I #15 Mar 29 2013 19:04:31

%S 1,1,1,1,4,1,1,9,5,1,1,16,14,6,1,1,25,30,20,7,1,1,36,55,50,27,8,1,1,

%T 49,91,105,77,35,9,1,1,64,140,196,182,112,44,10,1,1,81,204,336,378,

%U 294,156,54,11,1,1,100,285,540,714,672,450,210,65,12,1,1,121,385,825,1254,1386,1122,660

%N T(n,k) is the number of order-preserving partial isometries of an n-chain of height k (height of alpha = |Im(alpha)|).

%C The matrix inverse starts

%C 1;

%C -1,1;

%C 3,-4,1;

%C -7,11,-5,1;

%C 15,-26,16,-6,1;

%C -31,57,-42,22,-7,1;

%C 63,-120,99,-64,29,-8,1;

%C -127,247,-219,163,-93,37,-9,1;

%C 255,-502,466,-382,256,-130,46,-10,1;

%C ...perhaps related to A054143. - _R. J. Mathar_, Mar 29 2013

%H R. Kehinde, A. Umar, <a href="http://arxiv.org/abs/1101.0049">On the semigroup of partial isometries of a finite chain</a>, arXiv:1101.0049

%F T(n,0)=1. T(n,k)=(2*n-k+1)*C(n,k)/(k+1) if k>0.

%e T(3,2)=5 because there are exactly 5 order-preserving partial isometries (on a 3-chain) of height 2, namely: (1,2)-->(1,2); (1,2)-->(2,3); (2,3)-->(1,2); (2,3)-->(2,3); (1,3)-->(1,3), the mappings are coordinate-wise.

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, 4, 1;

%e 1, 9, 5, 1;

%e 1, 16, 14, 6, 1;

%e 1, 25, 30, 20, 7, 1;

%e 1, 36, 55, 50, 27, 8, 1;

%e 1, 49, 91, 105, 77, 35, 9, 1;

%o (PARI) T(n,k)=if(k==0,1, (2*n-k+1)*binomial(n,k)/(k+1));

%o for(n=0,17,for(k=0,n,print1(T(n,k),", ")))

%Y Cf. A097813 (row sums), A125165, A121306, A029653.

%K nonn,tabl,easy

%O 0,5

%A _Abdullahi Umar_, Dec 27 2010