login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183150
Semiprimes s such that s^2 is expressible as the sum of two positive cubes.
0
4, 671, 1261, 6371, 127499, 377567, 897623, 1984009, 4266107, 4870741, 4974061, 5491823, 24923137, 26784757, 28192247, 33601933, 36295069, 44091347, 44988481, 61717319, 95327051, 97587433, 99712367, 142798573, 149982097, 193405967
OFFSET
1,1
COMMENTS
Contains 4 and a subset of A099426.
If s=p*q for primes p < q, then (4*q^2-p^4)/3 is a square. Furthermore, q/p^2 = (m^4 + 6*m^3*n + 18*m^2*n^2 + 18*m*n^3 + 9*n^4)/(m^2 - 3*n^2)^2 for some integers m,n. The underlying identity (up to a common factor) is ( (m^4 + 6*m^3*n + 18*m^2*n^2 + 18*m*n^3 + 9*n^4)*(m^2 - 3*n^2) )^2 = ( (m+3*n)*(m+n)*(m^2+3*n^2) )^3 + ( -4*m*n*(m^2+3*m*n+3*n^2) )^3. - Max Alekseyev, Jun 16 2011
FORMULA
A001358 INTERSECTION A050801.
EXAMPLE
a(1) = 4 = 2*2 because 4^2 = 16 = 2^3 + 2^3 . a(2) = 671 = 11 * 61 and 56^3 + 65^3 = 671^2 = 450241. a(3) = 1261 = 13 * 97 and 1261^2 = 57^3 + 112^3. a(6) = 897623 = 107 * 8389.
MATHEMATICA
Select[Range[194*10^6], PrimeOmega[#]==2&&Length[ PowersRepresentations[ #^2, 2, 3]]>0&] (* The program takes a long time to run. *) (* Harvey P. Dale, Feb 27 2016 *)
CROSSREFS
Sequence in context: A046348 A332164 A334528 * A202368 A114765 A307920
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Feb 05 2011
EXTENSIONS
a(9)-a(26) from Donovan Johnson, Feb 11 2011
STATUS
approved