OFFSET
1,1
COMMENTS
Contains 4 and a subset of A099426.
If s=p*q for primes p < q, then (4*q^2-p^4)/3 is a square. Furthermore, q/p^2 = (m^4 + 6*m^3*n + 18*m^2*n^2 + 18*m*n^3 + 9*n^4)/(m^2 - 3*n^2)^2 for some integers m,n. The underlying identity (up to a common factor) is ( (m^4 + 6*m^3*n + 18*m^2*n^2 + 18*m*n^3 + 9*n^4)*(m^2 - 3*n^2) )^2 = ( (m+3*n)*(m+n)*(m^2+3*n^2) )^3 + ( -4*m*n*(m^2+3*m*n+3*n^2) )^3. - Max Alekseyev, Jun 16 2011
EXAMPLE
a(1) = 4 = 2*2 because 4^2 = 16 = 2^3 + 2^3 . a(2) = 671 = 11 * 61 and 56^3 + 65^3 = 671^2 = 450241. a(3) = 1261 = 13 * 97 and 1261^2 = 57^3 + 112^3. a(6) = 897623 = 107 * 8389.
MATHEMATICA
Select[Range[194*10^6], PrimeOmega[#]==2&&Length[ PowersRepresentations[ #^2, 2, 3]]>0&] (* The program takes a long time to run. *) (* Harvey P. Dale, Feb 27 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Feb 05 2011
EXTENSIONS
a(9)-a(26) from Donovan Johnson, Feb 11 2011
STATUS
approved