The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182918 Denominators of the swinging Bernoulli number b_n. 2
 1, 2, 6, 1, 120, 1, 1512, 1, 17280, 1, 190080, 1, 1415232000, 1, 21772800, 1, 829108224000, 1, 105082151731200, 1, 4345502515200000, 1, 19989311569920000, 1, 626378114550988800000, 1, 17896517558599680000, 1, 944578196742891110400000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Let zeta(n) denote the Riemann zeta function, B_n the Bernoulli numbers and let [n even] be 1 if n is even, 0 otherwise. Then 2 zeta(n) [n even] = (2 Pi)^n | B_n | / n! for n >= 2. Replacing in this formula the factorial of n by the swinging factorial of n (A056040) defines the 'swinging Bernoulli number' b_n. Then 2 zeta(n) [n even] = (2 Pi)^n b_n / n\$ for n >= 2. Let additionally b_0 = 1 and b_1 = 1/2. The b_n are rational numbers like the Bernoulli numbers; unlike the Bernoulli numbers the swinging Bernoulli numbers are unsigned, bounded in the interval [0,1] and approach 0 for n -> infinity. The numerators of the swinging Bernoulli numbers b_n are abs(A120082(n)). LINKS Table of n, a(n) for n=0..28. Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011. EXAMPLE 1, 1/2, 1/6, 0, 1/120, 0, 1/1512, 0, 1/17280, 0, 1/190080, .. MAPLE swbern:= proc(n) local swfact; swfact := n -> n!/iquo(n, 2)!^2; if n=0 then 1 elif n=1 then 1/2 else if n mod 2 = 1 then 0 else 2*Zeta(n)*swfact(n)/(2*Pi)^n fi fi end: Abs_A120082 := n -> numer(swbern(n)); A182918 := n -> denom(swbern(n)); seq(A182918(i), i=0..20); MATHEMATICA sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[1] = 2; a[_?OddQ] = 1; a[n_] := 2*Zeta[n]*sf[n]/(2*Pi)^n // Denominator; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Jul 26 2013 *) CROSSREFS Cf. A120082. Sequence in context: A347427 A117214 A185972 * A134301 A168294 A363737 Adjacent sequences: A182915 A182916 A182917 * A182919 A182920 A182921 KEYWORD nonn,frac AUTHOR Peter Luschny, Feb 03 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 17:21 EDT 2024. Contains 372738 sequences. (Running on oeis4.)