The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182918 Denominators of the swinging Bernoulli number b_n. 2
1, 2, 6, 1, 120, 1, 1512, 1, 17280, 1, 190080, 1, 1415232000, 1, 21772800, 1, 829108224000, 1, 105082151731200, 1, 4345502515200000, 1, 19989311569920000, 1, 626378114550988800000, 1, 17896517558599680000, 1, 944578196742891110400000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Let zeta(n) denote the Riemann zeta function, B_n the Bernoulli numbers and let [n even] be 1 if n is even, 0 otherwise.
Then 2 zeta(n) [n even] = (2 Pi)^n | B_n | / n! for n >= 2.
Replacing in this formula the factorial of n by the swinging factorial of n (A056040) defines the 'swinging Bernoulli number' b_n.
Then 2 zeta(n) [n even] = (2 Pi)^n b_n / n$ for n >= 2.
Let additionally b_0 = 1 and b_1 = 1/2. The b_n are rational numbers like the Bernoulli numbers; unlike the Bernoulli numbers the swinging Bernoulli numbers are unsigned, bounded in the interval [0,1] and approach 0 for n -> infinity. The numerators of the swinging Bernoulli numbers b_n are abs(A120082(n)).
LINKS
EXAMPLE
1, 1/2, 1/6, 0, 1/120, 0, 1/1512, 0, 1/17280, 0, 1/190080, ..
MAPLE
swbern:= proc(n) local swfact;
swfact := n -> n!/iquo(n, 2)!^2;
if n=0 then 1 elif n=1 then 1/2 else
if n mod 2 = 1 then 0
else 2*Zeta(n)*swfact(n)/(2*Pi)^n fi
fi end:
Abs_A120082 := n -> numer(swbern(n));
A182918 := n -> denom(swbern(n));
seq(A182918(i), i=0..20);
MATHEMATICA
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[1] = 2; a[_?OddQ] = 1; a[n_] := 2*Zeta[n]*sf[n]/(2*Pi)^n // Denominator; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Jul 26 2013 *)
CROSSREFS
Cf. A120082.
Sequence in context: A347427 A117214 A185972 * A134301 A168294 A363737
KEYWORD
nonn,frac
AUTHOR
Peter Luschny, Feb 03 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 17:21 EDT 2024. Contains 372738 sequences. (Running on oeis4.)