The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182599 Number of prime factors of form cn+1 for numbers 7^n+1 0
 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 4, 2, 1, 1, 2, 1, 2, 2, 3, 3, 3, 1, 1, 1, 2, 1, 4, 1, 4, 3, 3, 2, 3, 5, 4, 2, 1, 3, 3, 4, 2, 7, 3, 4, 4, 1, 3, 7, 4, 4, 3, 4, 3, 6, 5, 5, 4, 4, 3, 1, 3, 8, 3, 2, 5, 3, 3, 4, 4, 2, 5, 3, 1, 5, 5, 5, 4, 4, 3, 4, 3, 2, 5, 3, 3, 4, 2, 5, 4, 5, 4, 5, 3, 6, 6, 3, 5, 3, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS Repeated prime factors are counted. LINKS Table of n, a(n) for n=2..100. S. Mustonen, On prime factors of numbers m^n+-1 Seppo Mustonen, On prime factors of numbers m^n+-1 [Local copy] EXAMPLE For n=12, 7^12+1=13841287202=2*73*193*409*1201 has four prime factors of form, namely 73=6n+1, 193=16n+1, 409=34n+1, 1201=100n+1. Thus a(12)=4. MATHEMATICA m = 7; n = 2; nmax = 100; While[n <= nmax, {l = FactorInteger[m^n + 1]; s = 0; For[i = 1, i <= Length[l], i++, {p = l[[i, 1]]; If[IntegerQ[(p - 1)/n] == True, s = s + l[[i, 2]]]; }]; a[n] = s; } n++; ]; Table[a[n], {n, 2, nmax}] Table[{p, e}=Transpose[FactorInteger[7^n+1]]; Sum[If[Mod[p[[i]], n]==1, e[[i]], 0], {i, Length[p]}], {n, 2, 50}] CROSSREFS Sequence in context: A046081 A190592 A062501 * A183015 A183018 A067390 Adjacent sequences: A182596 A182597 A182598 * A182600 A182601 A182602 KEYWORD nonn AUTHOR Seppo Mustonen, Nov 24 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 15:38 EDT 2023. Contains 365660 sequences. (Running on oeis4.)