login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182599
Number of prime factors of form cn+1 for numbers 7^n+1
0
2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 4, 2, 1, 1, 2, 1, 2, 2, 3, 3, 3, 1, 1, 1, 2, 1, 4, 1, 4, 3, 3, 2, 3, 5, 4, 2, 1, 3, 3, 4, 2, 7, 3, 4, 4, 1, 3, 7, 4, 4, 3, 4, 3, 6, 5, 5, 4, 4, 3, 1, 3, 8, 3, 2, 5, 3, 3, 4, 4, 2, 5, 3, 1, 5, 5, 5, 4, 4, 3, 4, 3, 2, 5, 3, 3, 4, 2, 5, 4, 5, 4, 5, 3, 6, 6, 3, 5, 3, 3
OFFSET
2,1
COMMENTS
Repeated prime factors are counted.
EXAMPLE
For n=12, 7^12+1=13841287202=2*73*193*409*1201 has four prime factors of form, namely 73=6n+1, 193=16n+1, 409=34n+1, 1201=100n+1. Thus a(12)=4.
MATHEMATICA
m = 7; n = 2; nmax = 100;
While[n <= nmax, {l = FactorInteger[m^n + 1]; s = 0;
For[i = 1, i <= Length[l],
i++, {p = l[[i, 1]];
If[IntegerQ[(p - 1)/n] == True, s = s + l[[i, 2]]]; }];
a[n] = s; } n++; ];
Table[a[n], {n, 2, nmax}]
Table[{p, e}=Transpose[FactorInteger[7^n+1]]; Sum[If[Mod[p[[i]], n]==1, e[[i]], 0], {i, Length[p]}], {n, 2, 50}]
CROSSREFS
Sequence in context: A366417 A190592 A062501 * A183015 A183018 A067390
KEYWORD
nonn
AUTHOR
Seppo Mustonen, Nov 24 2010
STATUS
approved