login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182596 Number of prime factors of form cn+1 for numbers 3^n+1 0
1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 3, 1, 3, 2, 2, 2, 3, 2, 1, 4, 2, 2, 2, 2, 3, 1, 2, 1, 4, 2, 1, 2, 3, 2, 5, 2, 2, 2, 1, 3, 3, 2, 3, 2, 2, 3, 6, 2, 2, 2, 3, 3, 5, 2, 2, 5, 2, 3, 5, 1, 2, 1, 2, 3, 6, 3, 5, 3, 2, 3, 6, 4, 1, 2, 3, 4, 7, 3, 4, 5, 4, 5, 8, 3, 3, 3, 6, 2, 6, 2, 4, 4, 3, 5, 6, 3, 2, 5, 3, 4, 6, 4, 3, 7, 4, 4, 7, 7, 3, 4, 3, 3, 6, 1, 2, 5, 4, 4, 6, 2, 3, 4, 4, 5, 6, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,7
COMMENTS
Repeated prime factors are counted.
LINKS
Seppo Mustonen, On prime factors of numbers m^n+-1 [Local copy]
EXAMPLE
For n=8, 3^n+1=6562=2*17*193 has two prime factors of form, namely 17=2n+1, 193=24n+1. Thus a(8)=2.
MATHEMATICA
m = 3; n = 2; nmax = 130;
While[n <= nmax, {l = FactorInteger[m^n + 1]; s = 0;
For[i = 1, i <= Length[l],
i++, {p = l[[i, 1]];
If[IntegerQ[(p - 1)/n] == True, s = s + l[[i, 2]]]; }];
a[n] = s; } n++; ];
Table[a[n], {n, 2, nmax}]
Table[{p, e}=Transpose[FactorInteger[3^n+1]]; Sum[If[Mod[p[[i]], n] == 1, e[[i]], 0], {i, Length[p]}], {n, 2, 50}]
CROSSREFS
Sequence in context: A164002 A322156 A332278 * A087775 A366091 A089955
KEYWORD
nonn
AUTHOR
Seppo Mustonen, Nov 24 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 14 22:52 EDT 2024. Contains 374323 sequences. (Running on oeis4.)