login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182595
Number of prime factors of form cn+1 for numbers 2^n+1
1
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 3, 1, 1, 2, 2, 1, 2, 2, 3, 2, 2, 2, 3, 2, 1, 2, 2, 1, 2, 1, 4, 2, 2, 1, 3, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 1, 4, 2, 2, 4, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 3, 5, 1, 2, 3, 4, 5, 3, 2, 4, 2
OFFSET
2,13
COMMENTS
Repeated prime factors are counted.
LINKS
EXAMPLE
For n=14, 2^n+1=16385=5*29*113 has two prime factors of form, namely 29=2n+1, 113=8n+1. Thus a(14)=2.
MATHEMATICA
m = 2; n = 2; nmax = 250;
While[n <= nmax, {l = FactorInteger[m^n + 1]; s = 0;
For[i = 1, i <= Length[l],
i++, {p = l[[i, 1]];
If[IntegerQ[(p - 1)/n] == True, s = s + l[[i, 2]]]; }];
a[n] = s; } n++; ];
Table[a[n], {n, 2, nmax}]
Table[{p, e}=Transpose[FactorInteger[2^n+1]]; Sum[If[Mod[p[[i]], n] == 1, e[[i]], 0], {i, Length[p]}], {n, 2, 50}]
CROSSREFS
Sequence in context: A077479 A335225 A070106 * A109706 A174541 A029444
KEYWORD
nonn
AUTHOR
Seppo Mustonen, Nov 24 2010
STATUS
approved