login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182492
Expansion of 1 - x - (1 - sqrt(1 + 4*x^4)) / (2*x) in powers of x.
1
1, -1, 0, 1, 0, 0, 0, -1, 0, 0, 0, 2, 0, 0, 0, -5, 0, 0, 0, 14, 0, 0, 0, -42, 0, 0, 0, 132, 0, 0, 0, -429, 0, 0, 0, 1430, 0, 0, 0, -4862, 0, 0, 0, 16796, 0, 0, 0, -58786, 0, 0, 0, 208012, 0, 0, 0, -742900, 0, 0, 0, 2674440, 0, 0, 0, -9694845, 0, 0, 0
OFFSET
0,12
COMMENTS
HANKEL transform of sequence is the period 4 sequence [ 1, -1, -1, 1, ...] A087960 and the HANKEL transform of sequence omitting a(0) is the period 4 sequence [ -1, -1, -1, 1, ...]. This is the unique sequence with that property.
LINKS
FORMULA
G.f.: 1 - x - (1 - sqrt(1 + 4*x^4)) / (2*x).
G.f. A(x) satisfies A(x) = 1 - x / (1 - 2*x + 2*x^2) * A(x)^2.
G.f. A(x) satisfies A(x) = 1 - x + x^3 - x^7 / (1 - x + x^2 + x^4 + x * A(x)) = 1 / (1 + x / (1 - x / (1 + x / (1 - x / (1 - x / (1 + x / (1 - x / (1 + x * A(x))))))))).
a(4*n) = a(4*n + 1) = 0 unless n=0. a(4*n + 2) = 0. a(4*n + 3) = (-1)^n * A000108(n).
D-finite with recurrence: n*(n+1)*a(n) +n*(n+1)*a(n-1) +(n+2)*(n-1)*a(n-2) +(n+3)*(n-2)*a(n-3) +4*n*(n-5)*a(n-4) +4*(n+1)*(n-6)*a(n-5) +4*(n+2)*(n-7)*a(n-6) +4*(n+3)*(n-8)*a(n-7)=0. - R. J. Mathar, Jun 08 2016
EXAMPLE
G.f. = 1 - x + x^3 - x^7 + 2*x^11 - 5*x^15 + 14*x^19 - 42*x^23 + 132*x^27 + ...
MATHEMATICA
CoefficientList[Series[1-x -(1-Sqrt[1+4*x^4])/(2*x), {x, 0, 50}], x] (* G. C. Greubel, Aug 11 2018 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( 1 - x - (1 - sqrt(1 + 4*x^4 + x^2 * O(x^n))) / (2*x), n))}
(PARI) {a(n) = local(A); if( n<0, 0, A = 1 + O(x); for( k=1, n, A = 1 - x / (1 - 2*x + 2*x^2) * A^2); polcoeff( A, n))}
(PARI) {a(n) = local(A); if( n<0, 0, A = 1 + O(x); for( k=1, ceil(n / 8), A = 1 - x + x^3 - x^7 / (1 - x + x^2 + x^4 + x*A)); polcoeff( A, n))}
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!(1-x -(1-Sqrt(1+4*x^4))/(2*x))); // G. C. Greubel, Aug 11 2018
CROSSREFS
Sequence in context: A283666 A131427 A153198 * A222898 A113044 A333792
KEYWORD
sign
AUTHOR
Michael Somos, May 02 2012
STATUS
approved