login
A283666
T(n,k)=Number of nXk 0..1 arrays with no element unequal to more than four of its king-move neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
7
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 403, 403, 4, 0, 0, 40, 5432, 11886, 5432, 40, 0, 0, 264, 50383, 165152, 165152, 50383, 264, 0, 0, 1504, 376594, 1712052, 2674500, 1712052, 376594, 1504, 0, 0, 7936, 2523328, 15351085, 34315385, 34315385
OFFSET
1,13
COMMENTS
Table starts
.0.....0........0..........0............0..............0...............0
.0.....0........0..........0............4.............40.............264
.0.....0........2........403.........5432..........50383..........376594
.0.....0......403......11886.......165152........1712052........15351085
.0.....4.....5432.....165152......2674500.......34315385.......387076338
.0....40....50383....1712052.....34315385......554477876......7883014615
.0...264...376594...15351085....387076338.....7883014615....140913280266
.0..1504..2523328..126810474...4014050010...103248064080...2326415367317
.0..7936.15678950..989755263..39317379331..1277923264206..36332244115510
.0.39744.92540669.7421134282.369759902284.15187234735252.545100865508798
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: [order 9]
k=3: [order 30] for n>34
k=4: [order 84] for n>94
EXAMPLE
Some solutions for n=4 k=4
..0..1..0..1. .0..0..1..0. .0..0..0..0. .0..1..0..1. .0..1..1..0
..1..1..0..0. .0..0..1..1. .1..1..0..0. .0..1..0..0. .0..1..0..1
..0..1..0..0. .1..1..1..0. .0..0..1..0. .0..1..0..0. .1..1..1..0
..1..1..1..0. .1..0..1..0. .0..0..1..1. .0..1..0..1. .1..0..1..0
CROSSREFS
Sequence in context: A110173 A328820 A259863 * A131427 A153198 A182492
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 13 2017
STATUS
approved