Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 08 2022 08:45:55
%S 1,-1,0,1,0,0,0,-1,0,0,0,2,0,0,0,-5,0,0,0,14,0,0,0,-42,0,0,0,132,0,0,
%T 0,-429,0,0,0,1430,0,0,0,-4862,0,0,0,16796,0,0,0,-58786,0,0,0,208012,
%U 0,0,0,-742900,0,0,0,2674440,0,0,0,-9694845,0,0,0
%N Expansion of 1 - x - (1 - sqrt(1 + 4*x^4)) / (2*x) in powers of x.
%C HANKEL transform of sequence is the period 4 sequence [ 1, -1, -1, 1, ...] A087960 and the HANKEL transform of sequence omitting a(0) is the period 4 sequence [ -1, -1, -1, 1, ...]. This is the unique sequence with that property.
%H G. C. Greubel, <a href="/A182492/b182492.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: 1 - x - (1 - sqrt(1 + 4*x^4)) / (2*x).
%F G.f. A(x) satisfies A(x) = 1 - x / (1 - 2*x + 2*x^2) * A(x)^2.
%F G.f. A(x) satisfies A(x) = 1 - x + x^3 - x^7 / (1 - x + x^2 + x^4 + x * A(x)) = 1 / (1 + x / (1 - x / (1 + x / (1 - x / (1 - x / (1 + x / (1 - x / (1 + x * A(x))))))))).
%F a(4*n) = a(4*n + 1) = 0 unless n=0. a(4*n + 2) = 0. a(4*n + 3) = (-1)^n * A000108(n).
%F D-finite with recurrence: n*(n+1)*a(n) +n*(n+1)*a(n-1) +(n+2)*(n-1)*a(n-2) +(n+3)*(n-2)*a(n-3) +4*n*(n-5)*a(n-4) +4*(n+1)*(n-6)*a(n-5) +4*(n+2)*(n-7)*a(n-6) +4*(n+3)*(n-8)*a(n-7)=0. - _R. J. Mathar_, Jun 08 2016
%e G.f. = 1 - x + x^3 - x^7 + 2*x^11 - 5*x^15 + 14*x^19 - 42*x^23 + 132*x^27 + ...
%t CoefficientList[Series[1-x -(1-Sqrt[1+4*x^4])/(2*x), {x, 0, 50}], x] (* _G. C. Greubel_, Aug 11 2018 *)
%o (PARI) {a(n) = if( n<0, 0, polcoeff( 1 - x - (1 - sqrt(1 + 4*x^4 + x^2 * O(x^n))) / (2*x), n))}
%o (PARI) {a(n) = local(A); if( n<0, 0, A = 1 + O(x); for( k=1, n, A = 1 - x / (1 - 2*x + 2*x^2) * A^2); polcoeff( A, n))}
%o (PARI) {a(n) = local(A); if( n<0, 0, A = 1 + O(x); for( k=1, ceil(n / 8), A = 1 - x + x^3 - x^7 / (1 - x + x^2 + x^4 + x*A)); polcoeff( A, n))}
%o (Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!(1-x -(1-Sqrt(1+4*x^4))/(2*x))); // _G. C. Greubel_, Aug 11 2018
%Y Cf. A000108, A087960.
%K sign
%O 0,12
%A _Michael Somos_, May 02 2012