login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182261
Numbers n such that n^2 + {1,3,7} are semiprimes.
1
44, 46, 80, 88, 102, 104, 108, 226, 234, 238, 246, 272, 290, 308, 310, 328, 334, 358, 370, 426, 456, 480, 514, 526, 530, 586, 588, 614, 720, 766, 790, 842, 846, 848, 872, 880, 884, 896, 898, 900, 934, 940, 974, 980, 1040, 1076, 1078, 1088, 1110, 1160, 1208
OFFSET
1,1
COMMENTS
This is to A182238 as A001358 semiprimes are to A000040 primes.
LINKS
FORMULA
{ n : {n^2+1, n^2+3, n^2+7} in A001358 }.
EXAMPLE
44 is in the sequence because (44^2) + 1 = 1937 = 13 * 149, (44^2) + 3 = 1939 = 7 * 277, and (442) + 7 = 1943 = 29 * 67.
MAPLE
a:= proc(n) option remember; local k;
for k from 1+a(n-1) while map(x-> not isprime(k^2+x) and
add(i[2], i=ifactors(k^2+x)[2])=2, [1, 3, 7])<>[true$3]
do od; k
end: a(0):=0:
seq(a(n), n=1..50); # Alois P. Heinz, Apr 22 2012
MATHEMATICA
okQ[n_] := AllTrue[n^2 + {1, 3, 7}, PrimeOmega[#] == 2&];
Select[Range[2000], okQ] (* Jean-François Alcover, Jun 01 2022 *)
PROG
(Magma) IsSemiprime:=func<n | &+[m[2]: m in Factorization(n)] eq 2>; [n: n in [2..1225] | forall{n^2+i: i in [1, 3, 7] | IsSemiprime(n^2+i)}]; // Bruno Berselli, Apr 22 2012
CROSSREFS
Sequence in context: A121610 A254752 A178755 * A061757 A342187 A365870
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Apr 21 2012
STATUS
approved