|
|
A182261
|
|
Numbers n such that n^2 + {1,3,7} are semiprimes.
|
|
1
|
|
|
44, 46, 80, 88, 102, 104, 108, 226, 234, 238, 246, 272, 290, 308, 310, 328, 334, 358, 370, 426, 456, 480, 514, 526, 530, 586, 588, 614, 720, 766, 790, 842, 846, 848, 872, 880, 884, 896, 898, 900, 934, 940, 974, 980, 1040, 1076, 1078, 1088, 1110, 1160, 1208
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
This is to A182238 as A001358 semiprimes are to A000040 primes.
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 1..1000
|
|
FORMULA
|
{ n : {n^2+1, n^2+3, n^2+7} in A001358 }.
|
|
EXAMPLE
|
44 is in the sequence because (44^2) + 1 = 1937 = 13 * 149, (44^2) + 3 = 1939 = 7 * 277, and (442) + 7 = 1943 = 29 * 67.
|
|
MAPLE
|
a:= proc(n) option remember; local k;
for k from 1+a(n-1) while map(x-> not isprime(k^2+x) and
add(i[2], i=ifactors(k^2+x)[2])=2, [1, 3, 7])<>[true$3]
do od; k
end: a(0):=0:
seq(a(n), n=1..50); # Alois P. Heinz, Apr 22 2012
|
|
MATHEMATICA
|
okQ[n_] := AllTrue[n^2 + {1, 3, 7}, PrimeOmega[#] == 2&];
Select[Range[2000], okQ] (* Jean-François Alcover, Jun 01 2022 *)
|
|
PROG
|
(Magma) IsSemiprime:=func<n | &+[m[2]: m in Factorization(n)] eq 2>; [n: n in [2..1225] | forall{n^2+i: i in [1, 3, 7] | IsSemiprime(n^2+i)}]; // Bruno Berselli, Apr 22 2012
|
|
CROSSREFS
|
Cf. A001358, A182238.
Sequence in context: A254752 A063837 A178755 * A061757 A342187 A088066
Adjacent sequences: A182258 A182259 A182260 * A182262 A182263 A182264
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Jonathan Vos Post, Apr 21 2012
|
|
STATUS
|
approved
|
|
|
|