login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182206
Carmichael numbers of the form C = 37*73*(18n+91).
1
294409, 488881, 1461241, 2433601, 2628073, 16046641, 69331969, 105309289, 109393201, 509033161, 672389641, 885336481, 1074363265, 1103145121, 1232469001, 1384157161, 1674309385, 1760460481, 1836304561, 1854001513, 2073560401, 3240392401
OFFSET
1,1
COMMENTS
We got Carmichael numbers for n = 1, 5, 25, 49, 325, 1421, 2161, 2245, 10465, 18205, 22685, 25345, 34433, 36205, 37765, 38129, 42645, 89565, 104173, 119509, 134725, 186101.
Conjecture: Any Carmichael number C divisible by 37 and 73 can be written as C = 37*73*(18n+91), where n is natural; checked for the first 22 Carmichael numbers divisible by 37 and 73.
This follows from Korselt's criterion. More is true: such numbers are 37*73*(72k+1). - Charles R Greathouse IV, Oct 02 2012
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Carmichael Number
PROG
(PARI) Korselt(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1
list(lim)=my(v=List()); forstep(n=294409, lim, 194472, if(Korselt(n), listput(v, n))); Vec(v) \\ Charles R Greathouse IV, Jun 30 2017
CROSSREFS
Sequence in context: A328664 A328935 A335584 * A178997 A328938 A291637
KEYWORD
nonn
AUTHOR
Marius Coman, Apr 18 2012
EXTENSIONS
Terms corrected by Charles R Greathouse IV, Oct 02 2012
STATUS
approved