login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182144
G.f. satisfies: A(x) = A(x^2)^2 + x*A(x)^2.
2
1, 1, 4, 9, 35, 104, 376, 1321, 4960, 18667, 72220, 282368, 1119791, 4481428, 18097960, 73612825, 301377323, 1240776848, 5133985196, 21337546123, 89037498752, 372879415520, 1566706843664, 6602445412864, 27900411735756, 118197671533743, 501897512293808
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: A(x) = (1 - sqrt(1 - 4*x*A(x^2)^2)) / (2*x).
Let b(n) = Sum_{k=0..n} a(k)*a(n-k) form the self-convolution of this sequence, then
a(2*n+1) = b(2*n) for n>=0,
a(2*n) = b(2*n-1) + b(n) for n>0 with a(0)=1.
a(n) ~ c * d^n / n^(3/2), where d = 4.498712103893737093..., c = 0.7168247012663449... . - Vaclav Kotesovec, Aug 08 2014
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 9*x^3 + 35*x^4 + 104*x^5 + 376*x^6 +...
Related expansion:
A(x)^2 = 1 + 2*x + 9*x^2 + 26*x^3 + 104*x^4 + 350*x^5 + 1321*x^6 + 4856*x^7 + 18667*x^8 + 71870*x^9 + 282368*x^10 + 1118470*x^11 + 4481428*x^12 +...
From the coefficients in A(x)^2 we see that:
a(2) = 2 + 2 = 4; a(3) = 9;
a(4) = 9 + 26 = 35; a(5) = 104;
a(6) = 26 + 350 = 376; a(7) = 1321;
a(8) = 104 + 4856 = 4960; a(9) = 18667; ...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=subst(A, x, x^2+x*O(x^n))^2+x*A^2); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A006392 A179079 A084449 * A182723 A176607 A134815
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 24 2012
STATUS
approved