login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182141
Number of independent sets of nodes in the armchair (3,3) carbon nanotorus graph of breadth n (n>=1).
1
27, 18, 322, 2787, 37730, 486773, 6616216, 89809934, 1226678898, 16759965210, 229174768672, 3134027776854, 42863602781324, 586250943722267, 8018366958787066, 109670557564651352, 1500014136347328018, 20516391520781511387, 280612359537735848734
OFFSET
0,1
LINKS
C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8.
Index entries for linear recurrences with constant coefficients, signature (8,-1,-1018,1836,20616,-43461,-185682,384405,762090,-1499721,-1538730, 2873116,1499424,-2714609,-574862,1107300,18144,-108864).
FORMULA
a(n) = 18*a(n-1) -a(n-2) -1018*a(n-3) +1836*a(n-4) +20616*a(n-5) -43461*a(n-6) -185682*a(n-7) +384405*a(n-8) +762090*a(n-9) -1499721*a(n-10) -1538730*a(n-11) +2873116*a(n-12) +1499424*a(n-13) -2714609*a(n-14) -574862*a(n-15) +1107300*a(n-16) +18144*a(n-17) -108864*a(n-18).
G.f.: (979776*x^18 -75600*x^17 -12197940*x^16 +5916552*x^15 +35833019*x^14 -19220271*x^13 -44070216*x^12 +23310438*x^11 +26177559*x^10 -13274349*x^9 -7520073*x^8 +3654387*x^7 +940365*x^6 -451464*x^5 -43362*x^4 +24495*x^3 +25*x^2 -468*x+27)/( (x-1) *(x+1) *(3*x^3-5*x^2-5*x+1) *(36*x^4-x^3-20*x^2-x+1) *(36*x^4+x^3-20*x^2+x+1) *(28*x^5+42*x^4-109*x^3+17*x^2+13*x-1)).
PROG
(Maxima) a[0]:27; a[1]:18; a[2]:322; a[3]:2787; a[4]:37730; a[5]:486773; a[6]:6616216; a[7]:89809934; a[8]:1226678898; a[9]:16759965210; a[10]:229174768672; a[11]:3134027776854; a[12]:42863602781324; a[13]:586250943722267; a[14]:8018366958787066; a[15]:109670557564651352; a[16]:1500014136347328018; a[17]:20516391520781511387; a[18]:280612359537735848734;
a[n]:=18*a[n-1]-a[n-2]-1018*a[n-3]+1836*a[n-4]+20616*a[n-5]-43461*a[n-6]-185682*a[n-7]+384405*a[n-8]+762090*a[n-9]-1499721*a[n-10]-1538730*a[n-11]+2873116*a[n-12]+1499424*a[n-13]-2714609*a[n-14]-574862*a[n-15]+1107300*a[n-16]+18144*a[n-17]-108864*a[n-18];
makelist(a[k], k, 0, 25);
CROSSREFS
Sequence in context: A277270 A040704 A366673 * A346384 A247434 A022983
KEYWORD
nonn,easy
AUTHOR
Cesar Bautista, Apr 14 2012
STATUS
approved