login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181585
"Early bird" squares: write the square numbers in a string 149162536496481100... . Sequence gives numbers k such that k^2 occurs in the string ahead of its natural place.
1
7, 8, 21, 25, 46, 97, 129, 161, 196, 221, 245, 258, 277, 296, 350, 436, 460, 592, 661, 694, 789, 804, 875, 877, 1250, 2025, 2221, 3500, 3959, 4020, 5461, 5920, 7925, 9607, 12500, 14772, 19821, 20010, 21825, 22011, 22221, 24012, 25225, 25375, 25388, 26013, 28014
OFFSET
1,1
COMMENTS
Corresponding positions of the k^2's in a string 149162536496481100... are 2, 9, 23, 5, 112, 209, 395, 336, 496, 465, 656, 935, 65, 486, 603, 75, 112, 1115, 2317, 3163, 2329, 1987, 252, 421, 4036, 4279, 7092, ... .
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..145
MATHEMATICA
s="1"; ss={}; Do[tsn=ToString[n^2]; If[ !StringFreeQ[s, tsn], AppendTo[ss, n]; Print[n]]; s=s<>tsn, {n, 2, 99999}];
PROG
(Python)
def aupto(limit):
s, alst = "", []
for k in range(1, limit+1):
ss = str(k*k)
if ss in s: alst.append(k)
s += ss
return alst
print(aupto(28028)) # Michael S. Branicky, Jul 08 2021
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Zak Seidov, Oct 31 2010
EXTENSIONS
a(46) and beyond from Michael S. Branicky, Jul 08 2021
STATUS
approved