%I #15 Jul 08 2021 11:45:12
%S 7,8,21,25,46,97,129,161,196,221,245,258,277,296,350,436,460,592,661,
%T 694,789,804,875,877,1250,2025,2221,3500,3959,4020,5461,5920,7925,
%U 9607,12500,14772,19821,20010,21825,22011,22221,24012,25225,25375,25388,26013,28014
%N "Early bird" squares: write the square numbers in a string 149162536496481100... . Sequence gives numbers k such that k^2 occurs in the string ahead of its natural place.
%C Corresponding positions of the k^2's in a string 149162536496481100... are 2, 9, 23, 5, 112, 209, 395, 336, 496, 465, 656, 935, 65, 486, 603, 75, 112, 1115, 2317, 3163, 2329, 1987, 252, 421, 4036, 4279, 7092, ... .
%H Michael S. Branicky, <a href="/A181585/b181585.txt">Table of n, a(n) for n = 1..145</a>
%t s="1";ss={};Do[tsn=ToString[n^2];If[ !StringFreeQ[s,tsn],AppendTo[ss,n];Print[n]];s=s<>tsn,{n,2,99999}];
%o (Python)
%o def aupto(limit):
%o s, alst = "", []
%o for k in range(1, limit+1):
%o ss = str(k*k)
%o if ss in s: alst.append(k)
%o s += ss
%o return alst
%o print(aupto(28028)) # _Michael S. Branicky_, Jul 08 2021
%Y Cf. A000290, A116700, A141817.
%K base,nonn
%O 1,1
%A _Zak Seidov_, Oct 31 2010
%E a(46) and beyond from _Michael S. Branicky_, Jul 08 2021