login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181562
Primes of the form highly abundant number - 1.
3
2, 3, 5, 7, 11, 17, 19, 23, 29, 41, 47, 59, 71, 83, 89, 107, 167, 179, 239, 359, 419, 479, 503, 599, 659, 719, 839, 1259, 1439, 1559, 1619, 1979, 2099, 2339, 2399, 2879, 3023, 3119, 3359, 3779, 4679, 5039, 5879, 6299, 6719, 7559, 7919, 8819, 9239, 10079, 12239, 13859, 21839, 22679, 35279
OFFSET
1,1
COMMENTS
Note that this sequence and A181561 have an intersection beginning {2, 3, 5, 7, 11, 17, 19, ...}. This sequence UNION A181561 might be called nearly highly abundant primes. That union begins: {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 59, 61, 71, 73, 83, 89, 97, 107, 109, 167, 179, 181, 211, 239, 241, 337, 359, 419, 421, 479, 503, 541, 599, 601, 631, 659, 661, 719, 839, 1009, 1201, 1439, 1559, 1619, 1621, 1979, 1801, 2099} and thus has twin nearly highly abundant prime pairs: {(3,5), (11,13), (17,19), (29,31), (41,43), (59,61), (71,73), (107,109), (179,181), (239,241), (419,421), (599,601), (659,661), (1619,1621), ...}.
LINKS
FORMULA
{A002093(i) - 1} INTERSECTION A000040.
{(sigma(n) > sigma(m) for all m < n) - 1} INTERSECTION A000040.
EXAMPLE
The 55th highly abundant number is 2100; subtract one to get 2099, which is prime.
MATHEMATICA
seq = {}; smax = 0; Do[s = DivisorSigma[1, n]; If[s > smax, smax = s; If[PrimeQ[n - 1], AppendTo[seq, n - 1]]], {n, 1, 10^4}]; seq (* Amiram Eldar, Jun 07 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Jan 29 2011
STATUS
approved