login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181560
a(n+1) = a(n-1) + 2 a(n-2) - a(n-4) ; a(0)=1, a(n)=0 for 0 < n < 5;
0
1, 0, 0, 0, 0, -1, 0, -1, -2, -1, -3, -5, -4, -9, -13, -14, -26, -36, -45, -75, -103, -139, -217, -300, -420, -631, -881, -1254, -1843, -2596, -3720, -5401, -7658, -10998, -15864, -22594, -32459, -46664, -66649, -95718, -137383, -196557, -282155
OFFSET
0,9
COMMENTS
a(n) is the constant term of the canonical representative (polynomial of degree < 5) of x^n (mod x^5-x^3-2*x^2+1), see example.
FORMULA
G.f.: sum( a(k) x^k, k=0...oo ) = (1 - x^2 - 2*x^3)/(1 - x^2 - 2*x^3 + x^5)
EXAMPLE
x^6 = x^4 + 2*x^3 - x (mod x^5 - x^3 - 2*x^2 + 1), and the l.h.s. has no constant term, so a(6) = 0.
x^14 = 14*x^4 + 26*x^3 + 22*x^2 - 9*x - 13 (mod x^5 - x^3 - 2*x^2 + 1), and the constant term on the r.h.s. is a(14) = -13.
MATHEMATICA
LinearRecurrence[{0, 1, 2, 0, -1}, {1, 0, 0, 0, 0}, 50] (* Harvey P. Dale, Sep 21 2024 *)
PROG
(PARI) a(n) = polcoeff( lift( Mod( x, x^5-x^3-2*x^2+1)^n), 0)
CROSSREFS
Sequence in context: A113790 A181094 A282666 * A250103 A063705 A184250
KEYWORD
easy,sign
AUTHOR
M. F. Hasler, Nov 04 2010
STATUS
approved