The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181482 The sum of the first n integers, with every third integer taken negative. 4
1, 3, 0, 4, 9, 3, 10, 18, 9, 19, 30, 18, 31, 45, 30, 46, 63, 45, 64, 84, 63, 85, 108, 84, 109, 135, 108, 136, 165, 135, 166, 198, 165, 199, 234, 198, 235, 273, 234, 274, 315, 273, 316, 360, 315, 361, 408, 360, 409, 459, 408, 460, 513, 459, 514, 570, 513, 571, 630 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
The partial sum for the first 10^k terms are 76, 57256, 55722556, 55572225556, 55557222255556,..., i.e., the palindrome 5{k}2{k-1}5{k} plus 1+2*10^(2*k-1). - R. J. Cano, Mar 10 2013, edited by M. F. Hasler, Mar 25 2013
LINKS
Wolfram Alpha, WA Query
FORMULA
From R. J. Mathar, Oct 23 2010: (Start)
a(n) = a(n-1) + 2*a(n-3) - 2*a(n-4) - a(n-6) + a(n-7).
G.f.: -x*(1+2*x+2*x^3+x^4-3*x^2) / ( (1+x+x^2)^2*(x-1)^3 ).
a(n) = 2*A061347(n+1)/9 +4/9 + n*(n+1)/6 + 2*b(n)/3 where b(3k+1) = 0, b(3k) = -3k - 1 and b(3k+2) = 3k + 3. (End)
a(n) = sum((i+1)*A131561(i), i=0..n-1) = A000217(n)-6*A000217(floor(n/3)). [Bruno Berselli, Dec 10 2010]
a(0) = 0, a(n) = a(n-1) + (-1)^((n + 1) mod 3)*n - Jon Perry, Feb 17 2013
a(n) = n*(n+1)/2-3*floor(n/3)*(floor(n/3)+1). - R. J. Cano, Mar 01 2013 [Same as Berselli's formula. - Ed.]
a(3k) = 3k(k-1)/2. - Jon Perry, Mar 01 2013
a(0) = 0, a(n) = a(n-1) + (1 - ((n+1) mod 3 mod 2) * 2) * n. - Jon Perry, Mar 03 2013
EXAMPLE
a(7) = 1 + 2 - 3 + 4 + 5 - 6 + 7 = 10.
MATHEMATICA
a[n_] := Sum[If[Mod[j, 3] == 0, -j, j], {j, 1, n}]; Table[a[i], {i, 1, 50, 1}] (* Jon Perry *)
tri[n_] := n (n + 1)/2; f[n_] := tri@ n - 6 tri@ Floor[n/3]; Array[f, 63] (* Robert G. Wilson v, Oct 24 2010 *)
CoefficientList[Series[-(1 + 2*x + 2*x^3 + x^4 - 3*x^2)/((1 + x + x^2)^2*(x - 1)^3), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 17 2013 *)
Table[Sum[k * (-1)^Boole[Mod[k, 3] == 0], {k, n}], {n, 60}] (* Alonso del Arte, Feb 24 2013 *)
With[{nn=20}, Accumulate[Times@@@Partition[Riffle[Range[3nn], {1, 1, -1}], 2]]] (* Harvey P. Dale, Feb 09 2015 *)
PROG
(JavaScript) c = 0; for (i = 1; i < 100; i++) {c += Math.pow(-1, (i + 1) % 3)*i; document.write(c, ", "); } // Jon Perry, Feb 17 2013
(JavaScript) c=0; for (i = 1; i < 100; i++) { c += (1 - (i + 1) % 3 % 2 * 2) * i; document.write(c + ", "); } // Jon Perry, Mar 03 2013
(Magma) I:=[1, 3, 0, 4, 9, 3, 10]; [n le 7 select I[n] else Self(n-1)+2*Self(n-3)-2*Self(n-4)-Self(n-6)+Self(n-7): n in [1..60]]; // Vincenzo Librandi, Feb 17 2013
(PARI) a(n)=sum(k=1, n, k*((-1)^(k%3==0)) ) \\ R. J. Cano, Feb 26 2013
(PARI) a(n)={my(y=n\3); n*(n+1)\2-3*y*(y+1)} \\ R. J. Cano, Feb 28 2013
(Haskell)
a181482 n = a181482_list !! (n-1)
a181482_list = scanl1 (+) $ zipWith (*) [1..] $ cycle [1, 1, -1]
-- Reinhard Zumkeller, Nov 23 2014
CROSSREFS
Sequence in context: A021332 A008344 A088230 * A330420 A072329 A068630
KEYWORD
nonn,easy
AUTHOR
Jon Perry, Oct 23 2010
EXTENSIONS
More terms added by R. J. Mathar, Oct 23 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 16:32 EDT 2024. Contains 372664 sequences. (Running on oeis4.)