login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181453
Numbers k such that 19 is the largest prime factor of k^2 - 1.
4
18, 20, 37, 39, 56, 77, 113, 134, 151, 153, 170, 191, 246, 265, 305, 324, 341, 362, 379, 417, 419, 571, 626, 647, 664, 685, 721, 799, 911, 951, 989, 1025, 1616, 1937, 2431, 2661, 2889, 3041, 3079, 3212, 3457, 3970, 4751, 4863, 5851, 6271, 6499, 8399, 11551, 11857
OFFSET
1,1
COMMENTS
Numbers k such that A076605(k) = 19.
Sequence is finite, for proof see A175607.
Search for terms can be restricted to the range from 2 to A175607(8) = 23718421; primepi(19) = 8.
LINKS
MATHEMATICA
jj=2^36*3^23*5^15*7^13*11^10*13^9*17^8*19^8*23^8*29^7*31^7*37^7*41^6 *43^6*47^6*53^6*59^6*61^6*67^6*71^5*73^5*79^5*83^5*89^5*97^5; rr ={}; n = 2; While[n < 24000000, If[GCD[jj, n^2 - 1] == n^2 - 1, k = FactorInteger[n^2 - 1]; kk = Last[k][[1]]; If[kk == 19, AppendTo[rr, n]]]; n++ ]; rr
Select[Range[300000], FactorInteger[#^2-1][[-1, 1]]==19&]
PROG
(Magma) [ n: n in [2..300000] | m eq 19 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 18 2011
(Magma) p:=(97*89*83*79*73*71)^5 *(67*61*59*53*47*43*41)^6 *(37*31*29)^7 *(23*19*17)^8 *13^9 *11^10 *7^13 *5^15 *3^23 *2^36; [ n: n in [2..24000000] | p mod (n^2-1) eq 0 and (D[#D] eq 19 where D is PrimeDivisors(n^2-1)) ]; // Klaus Brockhaus, Feb 24 2011
(PARI) is(n)=n=n^2-1; forprime(p=2, 17, n/=p^valuation(n, p)); n>1 && 19^valuation(n, 19)==n \\ Charles R Greathouse IV, Jul 01 2013
KEYWORD
fini,full,nonn
AUTHOR
Artur Jasinski, Oct 21 2010
STATUS
approved