Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Dec 20 2024 18:15:43
%S 18,20,37,39,56,77,113,134,151,153,170,191,246,265,305,324,341,362,
%T 379,417,419,571,626,647,664,685,721,799,911,951,989,1025,1616,1937,
%U 2431,2661,2889,3041,3079,3212,3457,3970,4751,4863,5851,6271,6499,8399,11551,11857
%N Numbers k such that 19 is the largest prime factor of k^2 - 1.
%C Numbers k such that A076605(k) = 19.
%C Sequence is finite, for proof see A175607.
%C Search for terms can be restricted to the range from 2 to A175607(8) = 23718421; primepi(19) = 8.
%H Artur Jasinski, <a href="/A181453/b181453.txt">Table of n, a(n) for n = 1..72</a>
%t jj=2^36*3^23*5^15*7^13*11^10*13^9*17^8*19^8*23^8*29^7*31^7*37^7*41^6 *43^6*47^6*53^6*59^6*61^6*67^6*71^5*73^5*79^5*83^5*89^5*97^5; rr ={};n = 2; While[n < 24000000, If[GCD[jj, n^2 - 1] == n^2 - 1, k = FactorInteger[n^2 - 1]; kk = Last[k][[1]]; If[kk == 19, AppendTo[rr, n]]]; n++ ]; rr
%t Select[Range[300000], FactorInteger[#^2-1][[-1, 1]]==19&]
%o (Magma) [ n: n in [2..300000] | m eq 19 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // _Klaus Brockhaus_, Feb 18 2011
%o (Magma) p:=(97*89*83*79*73*71)^5 *(67*61*59*53*47*43*41)^6 *(37*31*29)^7 *(23*19*17)^8 *13^9 *11^10 *7^13 *5^15 *3^23 *2^36; [ n: n in [2..24000000] | p mod (n^2-1) eq 0 and (D[#D] eq 19 where D is PrimeDivisors(n^2-1)) ]; // _Klaus Brockhaus_, Feb 24 2011
%o (PARI) is(n)=n=n^2-1; forprime(p=2, 17, n/=p^valuation(n, p)); n>1 && 19^valuation(n, 19)==n \\ _Charles R Greathouse IV_, Jul 01 2013
%Y Cf. A076605, A175607, A181447-A181452, A181454-A181470, A181568.
%K fini,full,nonn
%O 1,1
%A _Artur Jasinski_, Oct 21 2010