login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A181419
Numbers of the form Fibonacci(p^{k+1})/Fibonacci(p^k) where p are primes, k>=1.
4
3, 7, 17, 47, 2207, 5777, 15005, 4870847, 598364773, 192900153617, 23725150497407, 792070839820228500005, 97415813466381445596089, 562882766124611619513723647, 400009475456580321242184872389193
OFFSET
1,1
COMMENTS
The union of A001566 (p=2), A002814 except the first two terms (p=3), A145275 (p=5), A145277 (p=7), etc.
LINKS
MAPLE
N:= 10^50: # for terms <= N
S:= {}: p:= 1:
do
p:= nextprime(p);
v:= combinat:-fibonacci(p);
for k from 2 do
w:= v;
v:= combinat:-fibonacci(p^k);
r:= v/w;
if r > N then break fi;
S:= S union {r};
od;
if k = 2 then break fi;
od:
sort(convert(S, list)); # Robert Israel, Apr 09 2024
MATHEMATICA
t = Sort@ Flatten[ Table[ {Prime[n]^(e + 1), Prime[n]^e}, {n, 8}, {e, 10}], 1]; u = Select[t, First@# < 350 &]; Sort[ Fibonacci[ #[[1]]]/Fibonacci[ #[[2]]] & /@ u] (* Robert G. Wilson v, Oct 21 2010 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Oct 18 2010
EXTENSIONS
a(11) onwards from Robert G. Wilson v, Oct 21 2010
STATUS
approved