login
A181420
Numbers of the form Fibonacci(p^c)/Fibonacci(p^b), where p is some prime and 1<=b<c are two integer exponents.
1
3, 7, 17, 21, 47, 329, 987, 2207, 5777, 15005, 98209, 103729, 726103, 2178309, 4870847, 598364773, 10749959329, 192900153617, 505248088463, 3536736619241, 10610209857723, 23725150497407, 1114384187445409, 18944531186571953
OFFSET
1,1
COMMENTS
By inserting dummy factors Fibonacci(p^d)/Fibonacci(p^d) for all intermediate exponents b < d < c it becomes obvious that each entry is a product of factors taken from A181419.
LINKS
MAPLE
N:= 10^40: # for terms <= N
S:= {}: p:= 1:
do
p:= nextprime(p);
L:= [combinat:-fibonacci(p)];
for k from 2 do
v:= combinat:-fibonacci(p^k);
if v/L[-1]>N then break fi;
L:= [op(L), v];
for j from k-1 to 1 by -1 do
r:= v/L[j];
if r < N then S:= S union {r} fi;
od;
od;
if k = 2 then break fi;
od:
sort(convert(S, list)); # Robert Israel, Apr 09 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Oct 18 2010
EXTENSIONS
10749959329 inserted by R. J. Mathar, Oct 22 2010
STATUS
approved