OFFSET
0,3
COMMENTS
The second differences of this sequence start with 2 zeros and then seem to alternate between 2 and -1 perpetually
The bases which yield the first five numbers on this list are {{2},{3},{2,4},{3,5},{3}}, where multiple items on the sublists indicate multiple bases yielding the same maximum. 3 and 4 seem to be the only 2 numbers with multiple bases that yield the same maximum. The numbers of the bases which yield numbers on this list for values n greater than 5 seem to be Floor((n+2)/2).
a(n) agrees with the lower matching number of the (n+1) X (n+1) white bishop graph up to at least n = 13. - Eric W. Weisstein, Dec 23 2024
LINKS
Rémy Sigrist, Table of n, a(n) for n = 0..10000
Eric Weisstein's World of Mathematics, White Bishop Graph.
Eric Weisstein's World of Mathematics, Lower Matching Number.
Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
FORMULA
a(n) = ceiling(n^2/2) - floor(n^2/4) for n != 2. - Eric W. Weisstein, Dec 23 2024
a(n) = (3 - 3 (-1)^n + 2 n^2)/8 for n != 2. - Eric W. Weisstein, Dec 23 2024
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n > 6. - Eric W. Weisstein, Dec 23 2024
G.f.: x*(-1+x^2-2*x^4+x^5)/((-1+x)^3*(1+x)). - Eric W. Weisstein, Dec 23 2024
MATHEMATICA
rev[x_, b_]:=FromDigits[Reverse[IntegerDigits[x, b]], b]
Max /@ Table[Table[rev[x, b], {b, 2, x + 1}], {x, STARTPOINT, ENDPOINT}]
Table[Piecewise[{{2, n == 2}}, 1/8 (3 - 3 (-1)^n + 2 n^2)], {n, 20}] (* Eric W. Weisstein, Dec 23 2024 *)
Table[Piecewise[{{2, n == 2}}, Ceiling[n^2/2] - Floor[n^2/4]], {n, 20}] (* Eric W. Weisstein, Dec 23 2024 *)
CoefficientList[Series[(-1 + x^2 - 2 x^4 + x^5)/((-1 + x)^3 (1 + x)), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 23 2024 *)
{1, 2} ~ Join ~ LinearRecurrence[{2, 0, -2, 1}, {3, 4, 7, 9}, 20] (* Eric W. Weisstein, Dec 23 2024 *)
PROG
(PARI) a(n) = vecmax(apply(b -> fromdigits(Vecrev(digits(n, b)), b), [2..max(2, n+1)])) \\ Rémy Sigrist, Jan 29 2020
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Dylan Hamilton, Oct 16 2010
EXTENSIONS
a(0) = 0 prepended by Rémy Sigrist, Jan 29 2020
STATUS
approved