login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181385
Maximal number that can be obtained by reversing n in an integer base.
2
0, 1, 2, 3, 4, 7, 9, 13, 16, 21, 25, 31, 36, 43, 49, 57, 64, 73, 81, 91, 100, 111, 121, 133, 144, 157, 169, 183, 196, 211, 225, 241, 256, 273, 289, 307, 324, 343, 361, 381, 400, 421, 441, 463, 484, 507, 529, 553, 576, 601, 625, 651, 676, 703, 729, 757, 784, 813, 841
OFFSET
0,3
COMMENTS
The second differences of this sequence start with 2 zeros and then seem to alternate between 2 and -1 perpetually
The bases which yield the first five numbers on this list are {{2},{3},{2,4},{3,5},{3}}, where multiple items on the sublists indicate multiple bases yielding the same maximum. 3 and 4 seem to be the only 2 numbers with multiple bases that yield the same maximum. The numbers of the bases which yield numbers on this list for values n greater than 5 seem to be Floor((n+2)/2).
a(n) agrees with the lower matching number of the (n+1) X (n+1) white bishop graph up to at least n = 13. - Eric W. Weisstein, Dec 23 2024
LINKS
Eric Weisstein's World of Mathematics, White Bishop Graph.
Eric Weisstein's World of Mathematics, Lower Matching Number.
FORMULA
a(n) = ceiling(n^2/2) - floor(n^2/4) for n != 2. - Eric W. Weisstein, Dec 23 2024
a(n) = (3 - 3 (-1)^n + 2 n^2)/8 for n != 2. - Eric W. Weisstein, Dec 23 2024
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n > 6. - Eric W. Weisstein, Dec 23 2024
G.f.: x*(-1+x^2-2*x^4+x^5)/((-1+x)^3*(1+x)). - Eric W. Weisstein, Dec 23 2024
MATHEMATICA
rev[x_, b_]:=FromDigits[Reverse[IntegerDigits[x, b]], b]
Max /@ Table[Table[rev[x, b], {b, 2, x + 1}], {x, STARTPOINT, ENDPOINT}]
Table[Piecewise[{{2, n == 2}}, 1/8 (3 - 3 (-1)^n + 2 n^2)], {n, 20}] (* Eric W. Weisstein, Dec 23 2024 *)
Table[Piecewise[{{2, n == 2}}, Ceiling[n^2/2] - Floor[n^2/4]], {n, 20}] (* Eric W. Weisstein, Dec 23 2024 *)
CoefficientList[Series[(-1 + x^2 - 2 x^4 + x^5)/((-1 + x)^3 (1 + x)), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 23 2024 *)
{1, 2} ~ Join ~ LinearRecurrence[{2, 0, -2, 1}, {3, 4, 7, 9}, 20] (* Eric W. Weisstein, Dec 23 2024 *)
PROG
(PARI) a(n) = vecmax(apply(b -> fromdigits(Vecrev(digits(n, b)), b), [2..max(2, n+1)])) \\ Rémy Sigrist, Jan 29 2020
CROSSREFS
Cf. A091974.
Cf. A000982 (ceiling(n^2/2)).
Cf. A002620 (ceiling(n^2/4)).
Sequence in context: A051061 A237870 A191015 * A188381 A005576 A339592
KEYWORD
base,nonn
AUTHOR
Dylan Hamilton, Oct 16 2010
EXTENSIONS
a(0) = 0 prepended by Rémy Sigrist, Jan 29 2020
STATUS
approved