login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181282
a(n) is the number of associate Rota-Baxter words in one idempotent generator x and one idempotent operator P of degree n. Such words are Rota-Baxter words that begin and/or end with x, and P is applied n times in the word.
2
1, 3, 12, 60, 336, 2016, 12672, 82368, 549120, 3734016, 25798656, 180590592, 1278025728, 9128755200, 65727037440, 476521021440, 3475800391680, 25489202872320, 187815179059200, 1389832325038080, 10324468700282880
OFFSET
0,2
LINKS
L. Guo and W. Sit, Enumeration and generating functions of Rota-Baxter words, Math. Comp. Sci. (2010). In G. Regensburger, M. Rosenkranz, and W. Sit, eds., Algebraic and Algorithmic Aspects of Differential and Integral Operators (AADIOS), Sp. Issue, Math. C. Sc., 4 (2,3) (2010).
FORMULA
a(n) = 3*2^(n-1)*A000108(n).
G.f.: (3 - 4*t - 3*sqrt(1-8*t))/(8*t).
(n+1)*a(n) = 4*(2*n-1)*a(n-1). - R. J. Mathar, Jul 24 2012
a(n) = (n+2) * A000257(n). - F. Chapoton, Feb 26 2024
EXAMPLE
For n = 2, the a(2) = 12 associate Rota-Baxter words are: xP(xP(x)), xP(xP(x))x, P(xP(x))x, xP(P(x)x), xP(P(x)x)x, P(P(x)x)x, xP(xP(x)x), xP(xP(x)x)x, P(xP(x)x)x, xP(x)xP(x), xP(x)xP(x)x, P(x)xP(x)x.
MATHEMATICA
CoefficientList[Series[(3-4x-3Sqrt[1-8x])/(8x), {x, 0, 40}], x]
a[0] = 1; a[n_]:= 3*2^(n-1) CatalanNumber[n]; Table[a[n], {n, 0, 20}] (* Indranil Ghosh, Mar 05 2017 *)
PROG
(PARI) a(n) = if(n==0, 1, 3*2^(n-1)*(binomial(2*n, n)/(n+1))); \\ Indranil Ghosh, Mar 05 2017
(Python)
import math
f = math.factorial
def C(n, r): return f(n)/f(r)/f(n-r)
def A181282(n): return 1 if n==0 else 3*2**(n-1)*(C(2*n, n)/(n+1)) # Indranil Ghosh, Mar 05 2017
(Magma) [1] cat [3*2^(n-1)*Catalan(n): n in [1..40]]; // G. C. Greubel, Jan 04 2023
(SageMath) [3*2^(n-1)*catalan_number(n) -int(n==0)/2 for n in range(41)] # G. C. Greubel, Jan 04 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
William Sit (wyscc(AT)sci.ccny.cuny.edu), Oct 11 2010
STATUS
approved