login
A020052
a(n) = floor(Gamma(n + 8/11)/Gamma(8/11)).
2
1, 0, 1, 3, 12, 60, 345, 2325, 17972, 156848, 1525707, 16366684, 191936576, 2442829156, 33533382055, 493855262996, 7766996408941, 129920667204109, 2303139100436492, 43131514062719762, 850867141055471683
OFFSET
0,4
LINKS
EXAMPLE
Gamma(8/11) = 1.2568727418...
Gamma(1 + 8/11)/Gamma(8/11) = 8/11 = 0.72727272..., so a(1) = 0.
Gamma(2 + 8/11)/Gamma(8/11) = 152/121 = 1.2561983471..., so a(2) = 1.
MAPLE
Digits := 64:f := proc(n, x) trunc(GAMMA(n+x)/GAMMA(x)); end;
seq(floor(pochhammer(8/11, n)), n = 0..25); # G. C. Greubel, Nov 30 2019
MATHEMATICA
Table[Floor[Gamma[n + 8/11]/Gamma[8/11]], {n, 0, 29}] (* Alonso del Arte, Jun 21 2018 *)
Floor[Pochhammer[8/11, Range[0, 25]]] (* G. C. Greubel, Nov 30 2019 *)
PROG
(PARI) a(n) = gamma(n + 8/11)\gamma(8/11); \\ Michel Marcus, Jun 21 2018
(Magma) [Floor(Gamma(n+8/11)/Gamma(8/11)): n in [0..25]]; // G. C. Greubel, Nov 30 2019
(Sage) [floor(rising_factorial(8/11, n)) for n in (0..25)] # G. C. Greubel, Nov 30 2019
CROSSREFS
Sequence in context: A128602 A092803 A181282 * A096471 A140097 A105227
KEYWORD
nonn
AUTHOR
STATUS
approved