login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A020052 a(n) = floor(Gamma(n + 8/11)/Gamma(8/11)). 2

%I

%S 1,0,1,3,12,60,345,2325,17972,156848,1525707,16366684,191936576,

%T 2442829156,33533382055,493855262996,7766996408941,129920667204109,

%U 2303139100436492,43131514062719762,850867141055471683

%N a(n) = floor(Gamma(n + 8/11)/Gamma(8/11)).

%H G. C. Greubel, <a href="/A020052/b020052.txt">Table of n, a(n) for n = 0..449</a>

%e Gamma(8/11) = 1.2568727418...

%e Gamma(1 + 8/11)/Gamma(8/11) = 8/11 = 0.72727272..., so a(1) = 0.

%e Gamma(2 + 8/11)/Gamma(8/11) = 152/121 = 1.2561983471..., so a(2) = 1.

%p Digits := 64:f := proc(n,x) trunc(GAMMA(n+x)/GAMMA(x)); end;

%p seq(floor(pochhammer(8/11,n)), n = 0..25); # _G. C. Greubel_, Nov 30 2019

%t Table[Floor[Gamma[n + 8/11]/Gamma[8/11]], {n, 0, 29}] (* _Alonso del Arte_, Jun 21 2018 *)

%t Floor[Pochhammer[8/11, Range[0, 25]]] (* _G. C. Greubel_, Nov 30 2019 *)

%o (PARI) a(n) = gamma(n + 8/11)\gamma(8/11); \\ _Michel Marcus_, Jun 21 2018

%o (MAGMA) [Floor(Gamma(n+8/11)/Gamma(8/11)): n in [0..25]]; // _G. C. Greubel_, Nov 30 2019

%o (Sage) [floor(rising_factorial(8/11, n)) for n in (0..25)] # _G. C. Greubel_, Nov 30 2019

%Y Cf. A020007, A020097.

%K nonn

%O 0,4

%A _Simon Plouffe_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 13:00 EDT 2021. Contains 343114 sequences. (Running on oeis4.)