The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A181067 a(n) = Sum_{k=0..n-1} binomial(n-1,k)^2 * binomial(n,k). 3
 1, 3, 16, 95, 606, 4032, 27616, 193167, 1372930, 9881498, 71846160, 526764680, 3889340560, 28888634400, 215680108416, 1617467908751, 12177754012458, 92004463332486, 697263463622080, 5298985086555090, 40371796982444356 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 FORMULA L.g.f.: Sum_{n>=1} [ Sum_{k>=0} binomial(n+k-1,k)^3 *x^k ] *x^n/n. Logarithmic derivative of A181066. Recurrence: n^2*a(n) = - (n^2-17*n+10)*a(n-1) + 48*(n^2-3*n+1)*a(n-2) + 16*(n-3)*(11*n-36)*a(n-3) + 128*(n-4)^2*a(n-4). - Vaclav Kotesovec, Oct 24 2012 a(n) ~ sqrt(3)*8^n/(6*Pi*n). - Vaclav Kotesovec, Oct 24 2012 a(n) = 3F2([1-n, 1-n, -n], [1, 1], -1). - Pierre-Louis Giscard, Jul 20 2013 a(n) = n * hypergeometric([-n+1,-n+1,-n+1], [1,2], -1) for n > 0. - Emanuele Munarini, Sep 27 2016 a(n) = Sum_{k=0..n-1} ((n-k)/n)^2 * binomial(n,k)^3. - G. C. Greubel, Apr 05 2021 EXAMPLE L.g.f.: L(x) = x + 3*x^2/2 + 16*x^3/3 + 95*x^4/4 + 606*x^5/5 + ... which equals the series: L(x) = (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + ...)*x + (1 + 2^3*x + 3^3*x^2 + 4^3*x^3 + 5^3*x^4 + 6^3*x^5 + ...)*x^2/2 + (1 + 3^3*x + 6^3*x^2 + 10^3*x^3 + 15^3*x^4 + 21^3*x^5 + ...)*x^3/3 + (1 + 4^3*x + 10^3*x^2 + 20^3*x^3 + 35^3*x^4 + 56^3*x^5 + ...)*x^4/4 + (1 + 5^3*x + 15^3*x^2 + 35^3*x^3 + 70^3*x^4 + 126^3*x^5 + ...)*x^5/5 + (1 + 6^3*x + 21^3*x^2 + 56^3*x^3 + 126^3*x^4 + 252^3*x^5 + ...)*x^6/6 + ... Exponentiation yields the g.f. of A181066: exp(L(x)) = 1 + x + 2*x^2 + 7*x^3 + 31*x^4 + 157*x^5 + 865*x^6 + ... + A181066(n)*x^n + ... MAPLE A181067:= n-> add(((n-k)/n)^2*binomial(n, k)^3, k=0..n-1); seq(A181067(n), n=1..25); # G. C. Greubel, Apr 05 2021 MATHEMATICA Table[Sum[Binomial[n-1, k]^2*Binomial[n, k], {k, 0, n-1}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 24 2012 *) Table[HypergeometricPFQ[{1-n, 1-n, -n}, {1, 1}, -1], {n, 1, 20}] (* Pierre-Louis Giscard, Jul 20 2013 *) PROG (PARI) {a(n)=sum(k=0, n-1, binomial(n-1, k)^3*n/(n-k))} (PARI) {a(n)=n*polcoeff(sum(m=1, n, sum(k=0, n, binomial(m+k-1, k)^3*x^k)*x^m/m)+x*O(x^n), n)} (Maxima) makelist(hypergeometric([-n+1, -n+1, -n], [1, 1], -1), n, 0, 12); /* Emanuele Munarini, Sep 27 2016 */ (Magma) [(&+[ ((n-k)/n)^2*Binomial(n, k)^3 : k in [0..n-1]]): n in [1..25]]; // G. C. Greubel, Apr 05 2021 (Sage) [sum( ((n-k)/n)^2*binomial(n, k)^3 for k in (0..n-1) ) for n in (1..25)] # G. C. Greubel, Apr 05 2021 CROSSREFS Cf. A181066 (exp), A181069 (variant). Sequence in context: A074555 A137644 A114174 * A006347 A000270 A157051 Adjacent sequences: A181064 A181065 A181066 * A181068 A181069 A181070 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 03 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 07:34 EDT 2024. Contains 373393 sequences. (Running on oeis4.)